
THE QUESTIONS OF 
COMPONENTIAL C++ 

COMPILATION
What the wild world can(‘t) do…



OUTLINE OF THE 
PROBLEM

Compiling C++ is hard …

… and it keeps getting harder.



Compilation model

■ Source file

– The entry point for a compilation, a 
translation unit

■ Headers

– Are just text files containing C++ code

– Textually pulled into the compilation 
stream (via #include)

■ Preprocessor → Parsing and semantics → 
Lookups and semantic code generation → 
Compilation and output code generation

■ Preprocessor supports string operations, 
such as textual emplace/replace (#define
and #if(n)def)

■ Compilation is done from a single textual 
buffer.



Headers are prevalent and important
■ Set up interfaces and type information

– … since C, and since ~40 years ago.

■ Contains actual executed code

– C++ inline methods

■ Contains blueprint for executed code

– C++ templates

– Template instantiation also takes up resources.

■ Headers are source text, they need to understood every single time.

– And not just at every compilation…

■ Some of this generated code that should be executed will be removed later by the linker. This 
remove also has some overhead.

■ One infinitesimal modification in any header ⟶ every dependent needs to be recompiled. 

All source files 53

Depends on Thrift 13

Depends on ODB 30

Depends on LLVM 25

Depends on Boost 42

External library dependencies in CodeCompass.



Headers are prevalent… a bit too much?

■ One solution: unity build

– Create a massive source text every time 

build is executed.

– This eliminates copies of same header.

– “Compile once, run once”?

– Has more fallbacks than benefits 

(linkage issues, packaging errors, …)

– Is not modularisation.

J. Mihalicza: Analysis and Methods for Supporting Generative Metaprogramming in Large 

Scale C++ Projects, Doctoral dissertation, Faculty of Informatics, ELTE, Hungary, 2014.



CACHING SOLUTIONS
Idea: Don’t compile stuff that need not be compiled… multiple times



ccache

■ First release in 2002.

■ Overlays the compiler invocation from the user’s perspective (supports most Unix-available 
compilers)

■ Easy setup via PATH environment variable

■ Caches the build output in a hash-based data storage

– If the same build command is executed, fetch result from the cache and present it as result.

– Otherwise, just call the compiler, then cache the result.

Compiler invocation command line

Dependent header paths and contents

List of output files

Compiler and environment metadata

Source file content hash

Compiler stderr

Compilation output file

(hash) (output)

association



ccache

■ Does not support linking, or precompiled headers (later)

■ Cache can be fine-tuned for file or size limit

■ At hitting limit, the oldest not used file is eliminated.

■ Cache is shareable after a small Unix-specific permission and environment setup.

■ Only exact input match results in a cache hit.

Compiler stderr

Compilation output file

(hash) (output)

association

Compiler invocation command line

Dependent header paths and contents

List of output files

Compiler and environment metadata

Source file content hash



ccache

Project name make make clean; 
make

Change a header 

file with average 

prominency, make

Revert file, make

“Hello World” 2 sec 72 ms 1s 18ms 58 ms

LLVM, Clang, CTE 

6.0

(Static linking, all 

targets)

48m 29s 20m 45s 8m 30s 5m

2749 cache miss

5118 files (12.2 

GiB) cache

50% cache hit + 203 cache miss

+ 203 files (2.3 

GiB)

Back to 50% 

cache hit

LLVM, Clang, CTE 

6.0

(Dynamic linking, 

X86 target, gold

linker)

23m 6s 1m 4s 5m 11s 22s

2226 cache miss

4071 files (360 

MiB)

50% cache hit + 203 cache miss

+ 203 files (111 

MiB)

Back to 50% 

cache hit



Precompiled headers

■ Create a compiled binary representation of the semantically analyzed and compiler 

instantiated header contents.

■ Use this header when compiling actual source files.

■ Eliminate the need of having to parse the headers.

■ Introduced in 1998 (MSVC), supposed by GCC since 2004, Clang since 2009.

■ Not a standard-backed thing, entirely driven by performance concerns.



Using precompiled headers

■ clang++ -xc++-header header.h -o header.h.pch

– Creates the PCH output file.

■ clang++ -include header.h source.cpp -o source.out

– Automatically prefix the source code with #include “header.h”

– If a header.h.pch exists, use that to load contents.

– Otherwise fall back to standard compilation

■ Only one PCH can be used at translating one translation unit!

■ If multiple -include specified: warning, use first.

■ PCH contents replace the <builtin> stack.



Precompiled headers Compiler setup, 

target, file layout

File locations, source ranges

Statements, expressions

(missing from Clang documentation image)

(Objective-C specific overload resolution)
Source: 

https://clang.llvm.org/docs/PCHInternals.html

■ Chained compilation can be done

– Still exactly one previous header + exactly one current header = 
exactly one header output.

– Results in optimal representation if done with Clang.

■ GCC built-in around 10x the size of Clang’s.

– GCH instead of PCH, most likely similar implementation.

■ Macros can bleed out and mess things up, thus caching PCHs is 
counter-intuitive.



Autogenerating PCHs?

■ PCHs are a maintenance burden – extra commands are needed to create them.

■ Cotire [1]

– CMake plugin that auto-generates unity build and PCH setup for out-of-tree library 

headers

■ aCC (HP C++) compiler [2]

– For every translation unit, precompile the header area:

the range from start of file to first non-preprocessor non-comment statement

■ IncludeWhatYouUse [3]

– Include usage analysis with libClang to eliminate unnecessary inclusion of headers 

which aren’t used in the current translation.

– Experimental, tailored for Google source code, and claimed to be buggy.

[1]: http://github.com/sakra/cotire

[2]: T. Krishnaswamy: Automatic Precompiled Headers: Speeding up C++ Application Build Times, 2002.

[3]: http://github.com/include-what-you-use/include-what-you-use



C++ modules

■ Standard proposal to enable componential, compartmented compilation

– Existed as a proposal for 10+ years

■ Introduced as a new language construct, akin to Java, Python, etc. packages

■ Incrementally coming into the language, eventually replacing almost all header 

mechanism.

– Designed for peaceful coexistence with the wild world.

■ Driven by performance and code quality concerns.



Standards proposal [1] Clang 7.0 “Modules TS” implementation

Explicitly defined interface (module, export, …) of a 

module that is understood by the compiler when a 

module is requested

Modules are made from headers, a header-to-

module association is saved in a module map

Modules have a symbolic name and a way to specify 

usage

import (Clang), or @import in GCC

Modules do not introduce new scoping and name 

lookup rules

1 module = 1 semantically separate translation

• The TU’s preprocessor shouldn’t affect it

The compiler forks itself for every module with a 

fresh preprocessor (only inheriting command-line)

Modules are full-fledged TUs, importing one 

shouldn’t affect overload and template resolution

Using submodules in Clang is not working well and 

can cause issues

Order of import does not matter It does for macros

Non-exported symbols can clash in two modules, but 

does not cause an issue in a TU importing both

Clang currently only performs a minimal check for 

ODR violation

It is NOT possible for modules to export macro 

definitions

Modules are internally translated to PCHs, which 

result in a weird behaviour regarding this

[1] G. D. Reis, M. Hall, G. Nishanov: A Module System for C++ (Revision 4), Open-STD document P0142R0

C++ modules



C++ modules

■ Clang modules are translated to PCHs, 
which result in weird behaviour with 
macros.

– Every macro directive in the import 
order (which is not defined!) override 
previously visible (defined in the 
current (sub)module or TU) 
definitions…

■ but an #undef always overrides a 
#define

– The active directives (those that are 
not overridden by the end of the 
importing) are inconsistent if the 
same name has different states 
(one undefines, the other defines, or 
two defines but differently)

– In this case, the program is ill-
formed.

■ llvm-modularize can help validate 
this “macro stack”

Let M1

#define X foo

and export this definition

Let M2

import M1;

#undef X

and export this explicit undefition

Sources importing both M1 and M2 in any 
order are well-formed (??) and will see X as 
undefined.
This is an example from the documentation!



zapcc

■ Compilation server architecture forked from Clang 5

■ Around 400k lines of diff (manually reducible to 170k)

– Zero documentation and project history, was supposed to be proprietary!

■ Drop-in replacement for Clang

■ For a build run: zapcc (client) forwards arguments and files to a zapccs server (started 

automatically in the local shell), which handles builds

■ Source files should not change in the same make invocation but between two compilations.

■ The server handles caching in memory…



zapcc

■ The server handles caching:

– Macro states and pre-processor stack

– Template instantiations (subtrees)

■ This is claimed to be the most important overhead of compilation

– On-the-fly header modifications

– IR builder intrinsics and diagnostic details

– Frontend data and Modules (LLVM IR modules, not C++ modules)

■ LLVM IR modules means globals, functions, co-dependencies, symbol tables, and target-

specific details

■ The server process uses the rewritten Clang as library

■ Cache lost when memory usage gets high, or when the server is killed

■ Carefully evicts parts of cache between two TUs



zapcc

G++ 7.3
(Ubuntu 18.03 default)

Clang 5.0 release zapcc

LLVM, Clang, CTE 6.0
(Dynamic linking with gold, 

every target)

26m 53s 22m 15s 10m 39s

However, zapcc has issues!

• Macro definition conflict errors happen all the time.

• Subsequent compilations of the same project (without modifications) result in different errors.

Compilation 

“attempt”

Macro error 

count

Linker error 

action count

Linker error 

symbol count

1. 42 1 8 in X86

2. 29 2 5+6 in ARM

3. 40 0

Compilation 

“attempt”

Macro error 

count

Linker error 

action count

Linker error 

symbol count

1. 36 1 8 in X86

2. 35 1 6 in ARM

3. 32 3 6 in AArch64

5 in Arm

5 in Hexagon

Reattempt with a clean install againAttempt in a single install



DISTRIBUTED 
COMPILATION SOLUTIONS

If we need to build, at least do it on multiple machines…



distcc

■ C++ compilation is single-thread, and there is only so much a single machine can do

■ First release in 2002, last major release (3.0) in 2008

■ Set up servers with a C/C++ compiler and assembler on them

■ distcc wraps over compilers on local machine to

– Send preprocessed output to server

– Receive compiled objects

■ (On the servers, ccache can work in conjunction with distcc!)

■ Pump-mode: Send sources and headers directly to servers, and use incremental include 

analysis on the local machine to figure out what is needed.

– Uses a local Python implementation

– No full preprocessing done for every TU

– Servers handle preprocessing



Bazel Build
■ Open-source version of tool used by Google

■ Written with a Java backend

■ Custom DSL for a very high level description of how the build should take place

– Orders of magnitude more abstract that CMake’s scripting language

– But can do fancies, like fetching dependencies mid-build

– cc_library(), cc_executable() and cc_test()

■ Locally, only the latest build information is cached

– The build’s input SHOULD not change by build-to-build conditions, or mid-compilation!

■ Remote caching to many backends (nginx, SSH, Google Cloud) without any garbage collection

– This cache works akin to ccache, but much more detailed

– No management of the cache – garbage collection is done via rm -rf

■ Bazel Remote Server

– Experimental and unsupported, but allows for garbage collection of old builds


