THE ROLE OF IMPLICIT CONVERSIONS IN ERRONEOUS FUNCTION ARGUMENT SWAPPING IN C++

RICHÁRD SZALAY, ÁBEL SINKOVICS, ZOLTÁN PORKOLÁB

EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS DEPARTMENT OF PROGRAMMING LANGUAGES & COMPILERS

IEEE SCAM 2020,

2020. 09. 27–28.

The work presented is supported by the European Union, co-financed by the European Social Fund in project EFOP-3.6.3-VEKOP-16-2017-00002.

1 Implicit conversions

2 Mixable parameter ranges

3 Empirical setup

4 Results

5 Summary

Coined by Rice et al.¹

Happens when wrong argument (from available variables, expressions) passed to function.

void f(String hostName, int port, String message);
String author = "Richard.Szalay", greeting = "Hello, World!";
f(author, 8080, greeting);

¹Rice et al., "Detecting Argument Selection Defects".

Argument swaps (\subset argument selection defects)

Special case when arguments are as intended, but out of order.

Previous literature findings:

- adjacency increases chance of mistake
- too many parameters increases chance of mistake

void f₂(String message, String hostName, int port);

$\mathsf{Reactive} \longrightarrow \mathsf{Proactive}$

f(T, V); void g(int Velocity, int Torque);

- Detect call sites
- Significant enough mismatch **in name** → report
- Use the type system to guard us!
- Swapped expressions → *t* compile error

```
struct Complex { double Re, Im; };
void h(int Scalar, Complex Comp);
```

```
void test() {
    int S = 8;
    Complex C = Complex{.5f, -.25f}; // = \left(\frac{1}{2} - \frac{1}{4}i\right)
    h(C, S); // \leftarrow?
```

IT DEPENDS ...

```
struct Complex {
    double R, I;
    Complex(double real) : R(real), I(0.0) {}
    operator double() const { return R; }
    11:
};
void h(int Scalar, Complex Comp);
void test() {
    int S = 8:
    Complex C = Complex{.5f, -.25f}; // = (\frac{1}{2} - \frac{1}{4}i)
    h(C, S); // X
```

IMPLICIT CONVERSION


```
struct Complex {
    double R, I;
    Complex(double real) : R(real), I(0.0) {}
    operator double() const { return R; }
    11
};
void h(int Scalar, Complex Comp);
void test() {
    h(Complex{.5f, -.25f}, 8); // = h(C, S); from before...
    h(o, Complex \{8, o\}):
```

IMPLICIT CONVERSION

An implicit conversion sequence $\mathcal{T}_1 \to \mathcal{T}_2$ exists and defined as:²

- 1. at most one standard conversion sequence (max. 4 steps)
- 2. at most one user-defined conversion (one function call!)
- 3. at most one standard conversion sequence (max. 4 steps)
- ... **if** the path taken is *unique*.
- \implies Fortunately, it means it's *bounded* at least...

²ISO/IEC JTC 1/SC 22, ISO/IEC 14882:2017 Information technology — Programming languages — C++, version 17 (C++17).

void
p (int i, int j, double d, Complex c, std::string s);

void
p (int i, int j, double d, Complex c, std::string s);

- Is int mixable with int? Same type, trivially
- Is int mixable with double? standard conversion
- Is int mixable with Complex? standard + user
- Is double mixable with Complex? user conversion
- Is Complex mixable with std::string?

MIXABLE ADJACENT PARAMETERS

- Is int mixable with int? Same type, trivially
- Is int mixable with double? (>>) standard conversion
- Is int mixable with Complex? standard + user
- Is double mixable with Complex? (>) user conversion
- Is Complex mixable with std::string? (X) No

MIXABLE ADJACENT PARAMETERS

- Is int mixable with int? Same type, trivially
- Is int mixable with double? (>>) standard conversion
- Is int mixable with Complex? standard + user
- Is double mixable with Complex? user conversion
- Is Complex mixable with std::string? (X) No

• ... (at most $\mathcal{O}\left(\frac{n(n-1)}{2}\right)$ checks)

ANALYSIS

Implemented as *Clang-Tidy* ³ analysis rule.

Developed relaxations and filtering to make more important findings stand out.

We sampled GitHub's most active projects for an analysis and selected 7 C and 7 C++.

Figure: One finding (from OpenCV⁴) visualised using CodeChecker ⁵.

³clang.llvm.org/extra/clang-tidy ⁴Xperience AI, *OpenCV*. ⁵github.com/Ericsson/codechecker

AVG. NUMBER OF MIXABLE RANGES BY LENGTH

Figure: Findings for C (left) and C*+ (right). Striped column indicates relaxed (conversions considered mixable, not just strict equality) mode.

AVG. NUMBER OF MIXABLE RANGES BY LENGTH

Figure: Findings for C (left) and C*+ (right). Striped column indicates relaxed (conversions considered mixable, not just strict equality) mode.

HOW MANY FUNCTIONS ARE WITH POTENTIALLY HIDDEN PROBLEMS?

TABLE I Detailed breakdown for the number of functions matched, across various configurations.

	Project													
Lang.		Functions considered	N (Normal)		CV (Section III-B)			Imp (Section IV)			CV ∪ Imp			
			T (total)	R (without related)	Т	+ vs. N	R	Т	+ vs. N	R	Т	+ vs. CV	+ vs. Imp	R
С	curl [38]	875	134	73	153	19	84	210	76	138	229	76	19	149
	git [39]	5721	1428	626	1 477	49	654	1610	182	771	1660	183	50	798
	netdata [40]	780	236	110	119	18	119	304	68	173	320	66	16	181
	PHP [41]	6310	1272	644	1306	34	659	1515	243	831	1548	242	33	846
	Postgres [42]	9506	2705	1314	2817	112	1365	3721	1016	2116	3 837	1020	116	2167
	Redis [43]	2834	589	242	628	39	257	700	111	332	744	116	44	351
	TMux [44]	1043	250	108	261	11	113	300	50	158	308	47	8	163
C++	Bitcoin [45]	1969	422	146	440	18	156	723	301	313	745	305	22	326
	guetzli [46]	165	81	35	84	3	37	83	2	39	91	7	8	46
	LLVM/Clang [37]	36804	7635	2638	7714	79	2677	9376	1734	3754	9592	1869	214	3865
	OpenCV [47]	11760	5162	2175	5456	294	2300	6064	895	2903	6352	889	288	3032
	ProtoBuf [48]	2038	339	128	343	4	129	424	85	198	433	90	9	204
	Tesseract [49]	1841	754	331	758	4	332	850	96	428	857	99	7	431
	Xerces [50]	1655	492	196	508	16	200	555	69	241	671	163	116	299

DETAILED BREAKDOWN FOR THE NUMBER OF FUNCTIONS MATCHED, ACROSS VARIOUS CONFIGURATIONS.														
Lang.	Project	Functions considered	N (Normal)		CV (Section III-B)			Imp (Section IV)			CV ∪ Imp			
			T (total)	R (without related)	Т	+ vs. N	R	Т	+ vs. N	R	Т	+ vs. CV	+ vs. Imp	R
С	curl [38]	875 5 791	134	73	153	19 40	84	210	76	138	229	76	19 50	149
	netdata [40]	780	236	110	1477	49 18	119	304	68	$171 \\ 173$	320	66	16	181
	PHP [41]	6310	1272	644	1306	34	659	1515	243	831	1548	242	33	846
	Postgres [42]	9506	2705	1314	2817	112	1365	3721	1016	2116	3837	1020	116	2167
	Redis [43]	2834	589	242	628	39	257	700	111	332	744	116	44	351
	TMux [44]	1043	250	108	261	11	113	300	50	158	308	47	8	163
C++	Bitcoin [45]	1969	422	146	440	18	156	723	301	313	745	305	22	326
	guetzli [46]	165	81	35	84	3	37	83	2	39	91	7	8	46
	LLVM/Clang [37]	36804	7635	2638	7714	79	2677	9376	1734	3754	9592	1869	214	3865
	OpenCV [47]	11760	5162	2175	5456	294	2300	6064	895	2903	6352	889	288	3032
	ProtoBuf [48]	2038	339	128	343	4	129	424	85	198	433	90	9	204
	Tesseract [49]	1841	754	331	758	4	332	850	96	428	857	99	7	431
	Xerces [50]	1655	492	196	508	16	200	555	69	241	671	163	116	299

 TABLE I

 Detailed breakdown for the number of functions matched, across various configurations

"Relatedness" filtering: int min(int a, int b) should not be reported.

DISTRIBUTION OF CULPRIT TYPES

Figure: Distribution of types (hand-made classification) that contribute to adjacent mix possibility across project. (*N*: strict type equality, *CI*: conversions measured)

References

- [1] ISO/IEC JTC 1/SC 22. ISO/IEC 14882:2017 Information technology Programming languages — C++, version 17 (C++17). Geneva, Switzerland: International Organization for Standardization, Dec. 2017, p. 1605.
- [2] Andrew Rice et al. "Detecting Argument Selection Defects". In: *Proceedings of the ACM on Programming Languages* 1.00PSLA (Oct. 2017), 104:1–104:22. ISSN: 2475-1421. DOI: 10.1145/3133928.
- [3] Xperience AI. OpenCV. version 4.2.0 (bda89a6), accessed 2019-12-30. 2019-. URL: http://opencv.org.

CONCLUSION

- Investigated the issue previously not explored w.r.t. C**
- Changed scope to call for proactive defence
- Implicit conversions increase the chance of mistake markedly
- Tool-driven static analysis rule to facilitate findings
- Discussed potential solutions, e.g. strong types

■ Have you ever made this mistake yourself?

- Are there conventions you know people follow when designing interfaces?
- Which domains do you think should be the first target of refactoring?
- Should we aim for domain-specific solutions, or try for general ones?
- How should we go through with a potential refactoring?

< 2 adjacent arguments for 'allocate' of convertible types may be easily swapped by mistake</p>

initCache(lineConsumption);