
The Role of Implicit Conversions in
Erroneous Function Argument Swapping
in C++

Richárd Szalay, Ábel Sinkovics,
Zoltán Porkoláb

Eötvös Loránd University, Faculty of Informatics
Department of Programming Languages & Compilers

IEEE SCAM 2020,
2020. 09. 27–28.
The work presented is supported by the European Union,
co-financed by the European Social Fund in project
EFOP-3.6.3-VEKOP-16-2017-00002.



1 Implicit conversions

2 Mixable parameter ranges

3 Empirical setup

4 Results

5 Summary



Argument selection defects

Coined by Rice et al.1

Happens when wrong argument (from available variables, expressions) passed to
function.

void f(String hostName, int port, String message);

String author = "Richard.Szalay", greeting = "Hello, World!";
f(author, 8080, greeting);

1Rice et al., “Detecting Argument Selection Defects”.
1 16



Argument swaps (⊂ argument selection defects)

Special case when arguments are as intended, but out of order.

Previous literature findings:
adjacency increases chance of mistake
too many parameters increases chance of mistake

void f2(String message, String hostName, int port);

2 16



Reactive −→ Proactive

void g(int Velocity, int Torque);

f(T, V);

Detect call sites
Significant enough mismatch in name
→ report

void g2(velocity_t V,
torque_t T);

Use the type system to guard us!
Swapped expressions→ E compile
error

3 16



Is this a swapped call? Is this a compile error?

struct Complex { double Re, Im; };
void h(int Scalar, Complex Comp);

void test() {
int S = 8;
Complex C = Complex{.5f, -.25f}; // =

(
1
2 −

1
4 ı
)

h(C, S); // ← ?
}

4 16



It depends . . .

struct Complex {
double R, I;
Complex(double real) : R(real), I(0.0) {}
operator double() const { return R; }

//
...

};
void h(int Scalar, Complex Comp);

void test() {
int S = 8;
Complex C = Complex{.5f, -.25f}; // =

(
1
2 −

1
4 ı
)

h(C, S); // X
}

5 16



Implicit conversion

8 : int
(

1
2 −

1
4 ı
)

: Complex

h(int, Complex)

1
2 : double

operator double();

0 : int
(builtin truncate double → int)

(builtin extend int → double)

Complex(double);

8
1 : double

(8 + 0ı) : Complex

6 16



Subtle mistake, expanded

struct Complex {
double R, I;
Complex(double real) : R(real), I(0.0) {}
operator double() const { return R; }

//
...

};
void h(int Scalar, Complex Comp);

void test() {
h(Complex{.5f, -.25f}, 8); // ≡ h(C, S); from before. . .
h(0, Complex{8, 0});

}

7 16



Implicit conversion

An implicit conversion sequence T1 → T2 exists and defined as:2

1. at most one standard conversion sequence (max. 4 steps)
2. at most one user-defined conversion (one function call!)
3. at most one standard conversion sequence (max. 4 steps)

. . . if the path taken is unique.

=⇒ Fortunately, it means it’s bounded at least. . .

2ISO/IEC JTC 1/SC 22, ISO/IEC 14882:2017 Information technology — Programming languages — C++,
version 17 (C++17).

8 16





Mixable adjacent parameters

void
p (int i, int j, double d, Complex c, std::string s);

Is int mixable with int? Same type, trivially

Is int mixable with double? standard conversion

Is int mixable with Complex? standard + user

Is double mixable with Complex? user conversion
Is Complex mixable with std::string?

10 16



Mixable adjacent parameters

void
p (int i, int j, double d, Complex c, std::string s);

Is int mixable with int? Same type, trivially

Is int mixable with double? standard conversion

Is int mixable with Complex? standard + user

Is double mixable with Complex? user conversion
Is Complex mixable with std::string?

10 16



Mixable adjacent parameters

void
p (int i, int j, double d, Complex c, std::string s);

ˆ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ˆ

Is int mixable with int? Same type, trivially
Is int mixable with double? standard conversion
Is int mixable with Complex? standard + user
Is double mixable with Complex? user conversion
Is Complex mixable with std::string? No

. . . (at most O
(

n(n−1)
2

)
checks)

10 16



Mixable adjacent parameters

void
p (int i, int j, double d, Complex c, std::string s);

ˆ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ˆ

Is int mixable with int? Same type, trivially
Is int mixable with double? standard conversion
Is int mixable with Complex? standard + user
Is double mixable with Complex? user conversion
Is Complex mixable with std::string? No

. . . (at most O
(

n(n−1)
2

)
checks)

10 16



Analysis

Implemented as Clang-Tidy 3 analysis rule.
Developed relaxations and filtering to make more important findings stand out.

We sampled GitHub’s most active projects for an analysis and selected 7 C and 7 C++.

Figure: One finding (from OpenCV4) visualised using CodeChecker 5.
3clang.llvm.org/extra/clang-tidy
4Xperience AI, OpenCV.
5github.com/Ericsson/codechecker

11 16

clang.llvm.org/extra/clang-tidy
github.com/Ericsson/codechecker


Avg. number of mixable ranges by length

Figure: Findings for C (left) and C++ (right). Striped column indicates relaxed (conversions
considered mixable, not just strict equality) mode.

12 16



Avg. number of mixable ranges by length

Figure: Findings for C (left) and C++ (right). Striped column indicates relaxed (conversions
considered mixable, not just strict equality) mode.

13 16



How many functions are with potentially hidden problems?

“Relatedness” filtering: int min(int a, int b) should not be reported.

14 16



How many functions are with potentially hidden problems?

“Relatedness” filtering: int min(int a, int b) should not be reported.

14 16



Distribution of culprit types

Figure: Distribution of types (hand-made classification) that contribute to adjacent mix
possibility across project. (N: strict type equality, CI: conversions measured)

15 16



References

[1] ISO/IEC JTC 1/SC 22. ISO/IEC 14882:2017 Information technology —
Programming languages — C++, version 17 (C++17). Geneva, Switzerland:
International Organization for Standardization, Dec. 2017, p. 1605.

[2] Andrew Rice et al. “Detecting Argument Selection Defects”. In: Proceedings of
the ACM on Programming Languages 1.OOPSLA (Oct. 2017), 104:1–104:22. issn:
2475-1421. doi: 10.1145/3133928.

[3] Xperience AI. OpenCV. version 4.2.0 (bda89a6), accessed 2019-12-30. 2019-.
url: http://opencv.org.

https://doi.org/10.1145/3133928
http://opencv.org


Conclusion

Investigated the issue previously not explored w.r.t. C++

Changed scope to call for proactive defence
Implicit conversions increase the chance of mistake markedly
Tool-driven static analysis rule to facilitate findings
Discussed potential solutions, e.g. strong types

16 / 16



Questions. . .

Have you ever made this mistake yourself?
Are there conventions you know people follow when designing interfaces?
Which domains do you think should be the first target of refactoring?
Should we aim for domain-specific solutions, or try for general ones?
How should we go through with a potential refactoring?


	Related work
	Implicit conversions
	Mixable parameter ranges
	Empirical setup
	Results
	Summary
	References

