Software Analysis and Testing

Green Software

João Saraiva

2020/2021

Departamento de Informática Universidade do Minho, Portugal

Global energy system is unsustainable

Green Computing

Going Green

• Caught the attention of many companies allowing them to save:

"up to 90% of energy used by ICT hardware can be attributed to software" - [The Greenhouse Gas Protocol Report, 2013]

Green Software

- ▶ Reducing energy consumption through software analysis and optimization
- Problem:
 - How to analyze
 - How to interpret
 - How to improve

Green Software

- Problems (extended to programmers):
 - How to analyze
 - How to interpret
 - How to improve

Mining questions about software energy consumption - [MSR'14] Integrated energy-directed test suite optimization - [ISTA'14]

Seeds: A software engineer's energy-optimization decision support framework - [ICSE'14]

Energy vs. Power

- Power (w) rate (or effort) at which that work is done
- ► Energy (J) amount of work done
- > Power can change constantly while Energy is the accumulation
 - Energy = Power x Seconds

Which languages are the most energy efficient?

Power

07652

Motivation

Understanding the energy efficiency of programming languages

What paradigms are most energy efficient? Is a faster language always a more energy efficient one?

Are there languages which run slower while consuming less energy?

How much energy consumption is attributed to CPU? How much energy does memory usage consume?

Which are the most energy efficient languages?

Comparing Programming Languages

The Computer Language Benchmarks Game

* Formerly known as The Great Computer Language Shootout

The Computer Language Benchmarks Game (CLBG)

OCaml

Racket

- Project to compare programming languages Ada
 - > 28 different programming languages
 - 13 different benchmarks
- Haskell Experts compete to code the fastest solutic²
- Same underlying algorithms
- Publicly available:
 - Source Code
 - Compiler Versions
 - Optimization Flags
- Comparable and easily replicable programs/solutions

		Benchmark	Description	Input
Ada	C	n-body	Double precision N-body simulation	50M
Fulan		fannkuch-redux	Indexed access to tiny integer sequence	12
Eriang	2	spectral norm	Eigenvalue using the power method	5,500
kell	Ja	mandelbrot	Generate Mandelbrot set portable bitmap file	16,000
		pidigits	Streaming arbitrary precision arithmetic	10,000
Caml	Pa	regex redux	Match DNA 8mers and substitute magic patterns	fasta output
		fasta	Generate and write random DNA sequences	25M
ket	Rub	k nucleotide	Hashtable update and k-nucleotide strings	fasta output
	·	reverse complement	Read DNA sequences, write their reverse-complement	fasta output
	5	binary trees	Allocate, traverse and deallocate many binary trees	21
		chameneos redux	Symmetrical thread rendezvous requests	6M
		meteor contest	Search for solutions to shape packing puzzle	2,098
utions!		thread ring	Switch from thread to thread passing one token	50M

Design

Benchmark	Description	Input
n-body	Double precision N-body simulation	50M
fannkuch-redux	Indexed access to tiny integer sequence	12
spectral norm	Eigenvalue using the power method	5,500
mandelbrot	Generate Mandelbrot set portable bitmap file	16,000
pidigits	Streaming arbitrary precision arithmetic	10,000
regex redux	Match DNA 8mers and substitute magic patterns	fasta output
fasta	Generate and write random DNA sequences	25M
k nucleotide	Hashtable update and k-nucleotide strings	fasta output
reverse complement	Read DNA sequences, write their reverse-complement	fasta output
binary trees	Allocate, traverse and deallocate	21

Ada	C	Chap	bel	C#	C+	+ <u>D</u>	art
Erlar	ng	F#	For	tran	Go	Ha	ck
Haskell	Ja	ava	Java	aScri	pt	Lisp	Lua
OCaml	Pa	ascal	Pe	erl	PHP	Pyt	hon
Racket	Rub	ру	JRuby	/	Rust		
	3	Swift	т	ypeSo	ript		

Paradigm	Languages
P	Erlang, F#, Haskell, Lisp, Ocaml, Perl,
Functional	Racket, Ruby, Rust;
Torresting	Ada, C, C++, F#, Fortran, Go, Ocaml,
Imperative	Pascal, Rust;
	Ada, C++, C#, Chapel, Dart , F#, Java,
Object-	JavaScript, Ocaml, Perl, PHP, Python,
Oriented	Racket, Rust, Smalltalk, Swift,
	TypeScript;
Contraction of	Dart, Hack, JavaScript, JRuby, Lua, Perl,
scripting	PHP, Python, Ruby, TypeScript;

Measurements

Energy

- Running Average Power Limit (RAPL)
- ▶ Designed by intel for i5/i7 architectures (SandyBridge, IvyBridge, Haswell, etc)
- Monitors energy consumption info for Machine-Specific Registers (MSRs)
- > Allows very precise and fine-grain measurements through function calls
 - DRAM/GPU
 - CPU
 - Package

Peak Memory

Unix's time tool

Execution

- Linux Ubuntu 16.0 4.8.0-22-generic
- 16GB Ram
- Intel(R) Core(TM) i5-4460 CPU @ 3.40GHz
- Compiler versions: <u>https://sites.google.com/view/energy-efficiency-languages/setup</u>
- Source Code: <u>http://benchmarksgame.alioth.debian.org/</u>
- ► Compile -> Run -> Measure
- > 27 Languages x 10 Benchmarks = 270 Results

Results

Energy vs. Time

Energy vs. Memory

Energy vs. Time vs. Memory

Energy vs. Time

	fasta			
	Energy	Time	Ratio	Mb
(c) Rust ↓9	26.15	931	0.028	16
(c) Fortran ↓6	27.62	1661	0.017	1
(c) C $\uparrow_1 \Downarrow_1$	27.64	973	0.028	3
(c) C++ $\uparrow_1 \Downarrow_2$	34.88	1164	0.030	4
(v) Java $\uparrow_1 \Downarrow_{12}$	35.86	1249	0.029	41
(c) Swift ↓9	37.06	1405	0.026	31
(c) Go ↓2	40.45	1838	0.022	4
(c) Ada ↓2 13	40.45	2765	0.015	3
(c) Ocaml $\downarrow_2 \Downarrow_{15}$	40.78	3171	0.013	201
(c) Chapel ↑5 ↓10	40.88	1379	0.030	53
(v) C# $\uparrow_4 \downarrow_5$	45.35	1549	0.029	35
(i) Dart ↓ ₆	63.61	4787	0.013	49
 (i) JavaScript ↓1 	64.84	5098	0.013	30
(c) Pascal ↓1 ↑13	68.63	5478	0.013	0
(i) TypeScript $\downarrow_2 \qquad \Downarrow_{10}$	82.72	6909	0.012	271
(v) $F \# \uparrow_2 \Uparrow_3$	93.11	5360	0.017	27
(v) Racket ↓1 ↑5	120.90	8255	0.015	21
(c) Haskell $\uparrow_2 \downarrow_8$	205.52	5728	0.036	446
(v) Lisp \Downarrow_2	231.49	15763	0.015	75
(i) Hack ↓3	237.70	17203	0.014	120
(i) Lua ↑18	347.37	24617	0.014	3
(i) PHP ↓1 113	430.73	29508	0.015	14
(v) Erlang ↑1 ↑12	477.81	27852	0.017	18
(i) Ruby $\downarrow_1 \Uparrow_2$	852.30	61216	0.014	104
(i) JRuby $\uparrow_1 \Downarrow_2$	912.93	49509	0.018	705
(i) Python ↓1 ↑18	1,061.41	74111	0.014	9
(i) Perl 1 1ts	2.684.33	61463	0.044	53

Energy vs. Time

	CPU-based Energy						
	Avg	Min	Max				
Compiled	88.94%	85.27%	91.75%				
Interpreted	87.98%	81.57%	92.90%				
VM	88.94%	86.10%	92.43%				

											r	egex-redu	Х	0.00				
Fnergy	/ VS 📑	Time										Energy	Time	Ratio	Mb			
LICISY	v 3 .	THIL .									(i) TypeScript $\downarrow_2 \Downarrow_{12}$	24.65	2009	0.012	587			
		Total									(c) C ↑1	24.83	805	0.031	151			
			- m-		100						(i) JavaScript $\downarrow_2 \downarrow_9$	25.68	2096	0.012	525			
$\cap C$	Energy	() C	1 ime	() Deces	MD 1.00						(i) PHP $\uparrow_2 \Downarrow_1$	34.57	1667	0.021	182			
(c) C	1.03	(c) C	1.04	(c) Fascal	1.00		-				(c) Pascal $\downarrow_1 \uparrow_4$	35.20	2282	0.015	106			
(c) $C \pm \pm$	1.34	(c) $C \pm \pm$	1.04		1.00		Ave	rage		(c) $C \pm \pm$	(i) Hack to 12	38,96	2052	0.019	268			
(c) Ada	1.70	(c) Ada	2019	ms Fortran	1.24		Joules	ms		(c) Ada	(c) Bust	40.26	2287	0.018	218		Joules	ms
(v) Java	1.98		1.89	(c) C++	1.34	Compiled	120	5103		(v) Java	(a) Chapel 11	07 10	4534	0.021	1055	led		
(c) Pascal	2.14	271	2.14	(c) Ada	1.47	Lon .	530	20622		(c) Pascal		148 66	5157	0.021	157	1.0.64		
(c) Chapel	2.18	(c) Go	2.83	(c) Rust	1.54	VIVI	576	20623		(c) Chapel	(c) Aua 5	140.00	5157	0.029	107			
(v) Lisp	2.27	(c) Pascal	3.02	(v) Lisp	1.92	Interpreted	2365	87614		(v) Lisp	(i) Python \downarrow_1	161.62	/110	0.023	429	reted	2365	87614
(c) Ocaml	2.40	(c) Ocaml	3.09	(c) Haskell	2.45					(c) Ocaml	(c) Ocaml $\downarrow_3 \qquad \Downarrow_6$	172.43	12978	0.013	948			
(c) Fortran	2.52	(v) C#	3.14	(i) PHP	2.57					(c) Fortran	(c) C++ \downarrow_1 \uparrow_6	176.24	10656	0.017	216			
(c) Swift	2.79	(v) Lisp	3.40	(c) Swift	2.71		-			(c) Swift	(i) Ruby $\downarrow_4 \Uparrow_4$	192.88	14282	0.014	305			
(c) Haskell	3.10	(c) Haskell	3.55	(i) Python	2.80		Ave	rage		(c) Haskell	(v) Java $\uparrow_4 \downarrow_6$	194.65	5694	0.034	1225			
(v) C#	3.14	(c) Swift	4.20	(c) Ocaml	2.82		Joules	ms		(v) C#	(i) Dart 1 1 14	197.92	13485	0.015	459			ms
(c) GO	3.23	(c) Fortran	4.20	(v) C#	2.85	Imperative	125	5585		(c) Gi0	(i) Perl 14 the	236 24	7164	0.033	154	ative	125	
(i) Dart $() E^{H}$	3.00	(v) F #	6.50	(i) Hack	2.54	imperative	125	5565		(i) Dart $\mathbb{E}^{\mathcal{H}}$	(i) I chi $ 4 $ $ 13 $	348 44	13477	0.026	1360	ALIVE.		
(i) IavaScript	4.15	(i) Dart	6.67	(i) Ruby	3.92	00	879	32975		(i) LavaScript	(i) Study $ _2 = \sqrt{4}$	258 20	96159	0.014	1303			
(v) Backet	7.91	(v) Backet	11.27	(c) Chapel	4.00	Functional	1367	42740		(v) Backet	(V) Racket 1	500.20	14700	0.014	900	onal	1367	42740
(i) TypeScript	21.50	(i) Hack	26.99	$(\mathbf{v}) \mathbf{F} \#$	4.25	"Scripting"	2320	88322		(i) TypeScript	(v) C # 1 1 1 3	522.59	14723	0.035	851	ting"		
(i) Hack	24.02	(i) PHP	27.64	(i) JavaScript	4.59	seripting	2520	00522	1	(i) Hack	(c) Swift ↑5	538.11	41703	0.013	677	8		
(i) PHP	29.30	(v) Erlang	36.71	(i) TypeScript	4.69					(i) PHP	(v) F# 介7	650.51	46905	0.014	667			
(v) Erlang	42.23	(i) Jruby	43.44	(v) Java	6.01					(v) Erlang	(c) Haskell		n.a	a.				
(i) Lua	45.98	() TureScript	46.20	(i) Perl	6.62					(i) Lua	(c) Fortran		n.a	a.				
(i) Jruby	46.54	4604J	59.34		6.72					(i) Jruby	(c) Go		n.e					
(i) Ruby	69.91		65.79 1	.67416ms	7.20					(i) Ruby	(i) Lua		n.e	2				
(i) Python	75.88	(i) Python	71.90	(n) Dart	8.64				24	(i) Python	(v) Erlang		n					
(i) Perl	79.58	(i) Lua	82.91	(i) Jruby	19.84				21	(i) Perl	(V) Linang		11.6					

Energy vs. Memory

	Energy		Time		M
(c) C	1.00	(c) C	1.00	(c) Pascal	1.
(c) Rust	1.03	(c) Rust	1.04	(c) Go	1.
(c) C++	1.34	(c) C++	1.56		1.
(c) Ada	1.70	(c) Ada	1.85	66Mb	1.
(v) Java	1.98	(v) Java	1.89	TOUTT	1.
(c) Pascal	2.14	(c) Chapel	2.14	(c) Ada	1.
(c) Chapel	2.18	(c) Go	2.83	(c) Rust	1.
(v) Lisp	2.27	(c) Pascal	3.02	(v) Lisp	1.
(c) Ocaml	2.40	(c) Ocaml	3.09	(c) Haskell	2.
(c) Fortran	2.52	(v) C#	3.14	(i) PHP	2.
(c) Swift	2.79	(v) Lisp	3.40	(c) Swift	2.
(c) Haskell	3.10	(c) Haskell	3.55	(i) Python	2.
(v) C#	3.14	(c) Swift	4.20	(c) Ocaml	2.
(c) Go	3.23	(c) Fortran	4.20	(v) C#	2.
(i) Dart	3.83	(v) F#	6.30	(i) Hack	3.
(v) F#	4.13	(i) JavaScript	6.52	(v) Racket	3.
(i) JavaScript	4.45	(i) Dart	6.67	(i) Ruby	3.
(v) Racket	7.91	(v) Racket	11.27	(c) Chapel	4.
(i) TypeScript	21.50	(i) Hack	26.99	(v) F#	4.
(i) Hack	24.02	(i) PHP	27.64	(i) JavaScript	4.
(i) PHP	29.30	(v) Erlang	36.71	(i) TypeScript	4.
(v) Erlang	42.23	(i) Jruby	43.44	(v) Java	6.
(i) Lua	45.98	(i) TypeScript	46.20	(i) Porl	6.
(i) Jruby	46.54	(i) Ruby	59.34	1309Mb	6.
(i) Ruby	69.91	(i) Perl	65.79	100001110	7.
(i) Python	75.88	(i) Python	71.90	(i) Dart	8.
(i) Perl	79.58	(i) Lua	82.91	(i) Jruby	19

	Average
	Mb
Compiled	125
VM	285
Interpreted	426
ļ	Average
	Average Mb
Imperative	Average Mb 116
Imperative 00	Average Mb 116 249
Imperative OO Functional	Average Mb 116 249 251

Energy vs. Memory

24

Energy vs. Time vs. Memory

Spearman rank-order correlation coefficient

Spearman p = 0.2091

			1 00. 1		
	Energy		Time		Mb
(c) C	1.00	(c) C	1.00	(c) Pascal	1.00
(c) Rust	1.03	(c) Rust	1.04	(c) Go	1.05
(c) C++	1.34	(c) C++	1.56	(c) C	1.17
(c) Ada	1.70	(c) Ada	1.85	(c) Fortran	1.24
(v) Java	1.98	(v) Java	1.89	(c) C++	1.34
(c) Pascal	2.14	(c) Chapel	2.14	(c) Ada	1.47
(c) Chapel	2.18	(c) Go	2.83	(c) Rust	1.54
(v) Lisp	2.27	(c) Pascal	3.02	(v) Lisp	1.92
(c) Ocaml	2.40	(c) Ocaml	3.09	(c) Haskell	2.45
(c) Fortran	2.52	(v) C#	3.14	(i) PHP	2.57
(c) Swift	2.79	(v) Lisp	3.40	(c) Swift	2.71
(c) Haskell	3.10	(c) Haskell	3.55	(i) Python	2.80
(v) C#	3.14	(c) Swift	4.20	(c) Ocaml	2.82
(c) Go	3.23	(c) Fortran	4.20	(v) C#	2.85
(i) Dart	3.83	(v) F#	6.30	(i) Hack	3.34
(v) F#	4.13	(i) JavaScript	6.52	(v) Racket	3.52
(i) JavaScript	4.45	(i) Dart	6.67	(i) Ruby	3.97
(v) Racket	7.91	(v) Racket	11.27	(c) Chapel	4.00
(i) TypeScript	21.50	(i) Hack	26.99	(v) F#	4.25
(i) Hack	24.02	(i) PHP	27.64	(i) JavaScript	4.59
(i) PHP	29.30	(v) Erlang	36.71	(i) TypeScript	4.69
(v) Erlang	42.23	(i) Jruby	43.44	(v) Java	6.01
(i) Lua	45.98	(i) TypeScript	46.20	(i) Perl	6.62
(i) Jruby	46.54	(i) Ruby	59.34	(i) Lua	6.72
(i) Ruby	69.91	(i) Perl	65.79	(v) Erlang	7.20
(i) Python	75.88	(i) Python	71.90	(i) Dart	8.64
(i) Perl	79.58	(i) Lua	82.91	(i) Jruby	19.84

Energy vs. Time vs. Memory (Pareto Optimization)

Time & Memory	Energy & Time	Energy & Memory	Energy & Time & Memory
C • Pascal • Go	С	C • Pascal	C • Pascal • Go
Rust • C++ • Fortran	Rust	Rust • C++ • Fortran • Go	Rust • C++ • Fortran
Ada	C++	Ada	Ada
Java • Chapel • Lisp • Ocaml	Ada	Java • Chapel • Lisp	Java • Chapel • Lisp • Ocaml
Haskell • C#	Java	OCaml • Swift • Haskell	Swift • Haskell • C#
Swift • PHP	Pascal • Chapel	C# • PHP	Dart • F# • Racket • Hack • PHP
F# • Racket • Hack • Python	Lisp • Ocaml • Go	Dart • F# • Racket • Hack • Python	JavaScript • Ruby • Python
JavaScript • Ruby	Fortran • Haskell • C#	JavaScript • Ruby	TypeScript • Erlang
Dart • TypeScript • Erlang	Swift	TypeScript	Lua • JRuby • Perl
JRuby • Perl	Dart • F#	Erlang • Lua • Perl	
Lua	JavaScript	JRuby	
	Racket		
	TypeScript • Hack		
	PHP		
	Erlang		
	Lua • JRuby		
	Ruby		
atter in			

Wrap Up

- General ranking of programming languages
- Unexpected results
- Time and Energy are not always proportional
- C is still the King (Rust is close behind)

Wrap Up

- General ranking of programming languages
- Unexpected results
- ▶ Time and Energy are not always proportional
- C is still the King (Rust is close behind)

Future Work

- Add new languages
- Update certain compilers
- Measure continuous RAM usage
- Suggestions?

Howard Chu @hvc_symas

If you're coding in any language other than C you're murdering polar bears. And drowning Florida.

Follow

Follow

Replying to @hyc_symas @ISCdotORG

OTOH, if you're coding in C you're responsible for all the buffer overflows and resulting exploits. Polar bears and Florida, or security?

Follow

so if you like birds and trees and all the stuff then better avoid Python :) http://greenlab.di.uminho.pt/wpcontent/uploads/2017/09/paperSLE.pdf ...

sites.google.com/view/energy-ef ... is unfair towards python. For fair comparison they should also account for energy consumption needed for coding

Can we save energy by refactoring Java programs to use different data structure implementations?

Research Questions

- ▶ (RQ1) Can we define an energy consumption quantification of Java data structures and their methods?
- ▶ (RQ2) Can we use such quantification to decrease the energy consumption of software systems?

Towards a Ranking of Java data structures

Design

- Simple scenario of:
 - Storing
 - Retrieving
 - Deleting

String values

Towards a Ranking of Java data structures

Design - Data Structures

► Java Collections Framework (JCF) library

Sets	Lists	Maps
ConcurrentSkipListSet	ArrayList	ConcurrentHashMap
CopyOnWriteArraySet	AttributeList	ConcurrentSkipListMap
HashSet	CopyOnWriteArravList	HashMap
LinkedHashSet	LinkedList	Hashtable
TreeSet	RoleList	IdentityHashMap
	RoleUnresolvedList	LinkedHashMap
	Stack	Properties
	Vector	SimpleBindings
		TreeMap
		UIDefaults
		WeakHashMap

Towards a Ranking of Java data structures

Design - Methods	Sets	Lists	Maps
Design methods =	add	add	clear
	addAll	addAll	containsKey
	clear	add(index)	containsValue
	contains	addAll(index)	entrySet
	containsAll	clear	get
	iterateAll	contains	iterateAll
	iterator	containsAll	keySet
	remove	get	put
	removeAll	indexOf	putAll
	retainAll	iterator	remove
	toArray	lastIndexOf	values
		listIterator	
		listIterator(index)	
		remove	
		removeAll	
		Continues	
		remove(index)	
		retainAll	
		set	

Towards a Ranking of Java data structures

Design - Benchmark

Test description of Set methods

Method	Description of the test for the method
add	add popsize/10 elements. half existing, half new
addAll	addAll of secondaryCol 5 times
clear	clear 5 times
contains	contains popsize/10 elements. half existing, half new
containsAll	containsAll of secondaryCol 5 times
iterateAll	iterate and consult popsize values
iterator	iterator popsize times
remove	remove popsize/10 elements. half existing, half new
removeAll	removeAll of secondaryCol 5 times
retainAll	retainAll of secondaryCol 5 times
toArray	toArray 5 times

Towards a Ranking of Java data structures

Execution - Specifications

- ► Linux 3.13.0-74-generic OS
- 8GB Ram
- Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz
- ▶ Java Interpreter/Compiler versions 1.8.0_66
- RAPL/jRAPL

Towards a Ranking of Java data structures

Execution - For every test

- ▶ Warm-up
 - Instantiated
 - Populated w/ popsize
 - > Performed simple actions on the data structure
- Each test x20
 - Extracted time/Joules consumed
 - Removed lowest/highest 20%
- ▶ 336 different test (Collection.method) configurations
- ► 6720 executions for each popsize
- ▶ 20,000+ different executions

Towards a Ranking of Java data structures

Results (25k pop)

Towards a Ranking of Java data structures

	Concurrent SkiplistSet		HashSot		Linked HashSet		TreeSet	
Methods 🖵	J							
add	14.0472	824	17.5243	1072	15.0643	876	14.1021	758
addAll	19.5092	1518	17.8589	1100	16.5155	983	13.5737	983
clear	11.5958	747	12.0199	764	12.2874	770	11.5565	758
contains	13.6576	870	16.6950	1014	15.6210	880	11.2337	682
containsAll	16.9809	1212	17.2110	1038	15.8865	886	12.3979	844
iterateAll	13.0184	785	18.1706	1091	15.4155	865	11.2088	684
iterator	13.2534	752	16.7433	1013	15.5284	850	11.0499	641
remove	12.7444	789	15.5699	949	13.6615	799	11.2653	675
removeAll	17.2849	1293	17.0514	998	14.5821	841	13.2071	937
retainAll	3621.9872	346898	3912.0129	384829	3584.3529	346337	4111.2397	408297
toArray	14.8120	875	17.8458	1070	14.3511	848	13.1271	750

Towards a Ranking of Java data structures

Towards a Ranking of Java data structures

					opyOn Write					Ко	le																								
	ArrayList		AttributeList	4	ArrayList		.inkedList		RoleList	Un	resolved List	9	itack		/ector																				
Methods 🚽	J r	ms J	J n	ns J	1	ms .	1	ns .	l n	ns J	m	is J		ms J	l n	is																			
add	0.9773	71	1.1510	67	1.7839	117	1.8016	86	1.4801	76	1.1865	74	1.5659	76	1.5177	69								Linke				Simple					W	eak	
addAll	1.3353	76	1.0492	88	1.3586	82	1.1043	88	1.6661	76	1.8672	88	1.1015	88	1.7903	73		HashMap		SkipListMap	Hash	Map	Hashtable	Hash	Map	Prop	erties	Bindin	<u>gs</u>	TreeMap		UIDefaults	Ha	shMap	
addAlli	1.7855	86	1.6035	68	1.1789	86	1.7272	99	1.5980	81	1.2497	85	1.2962	72	1.6268	90	Methods	<mark>↓</mark>]	ms	1 I	ms J	ms	s J r	ns J	ms	J	ms	J	ms	J	ms	J n	ıs J	m	ns
addl	1.7125	93	1.3849	87	1.6558	119	1.6404	96	1.2718	85	1.3124	86	1.5287	83	1.4554	86	clear	2.0276	94	2.2961	88 1.	8395	104 1.5761	94 1	.5025	97 2	.0777	98 2.14	1 1	1.6706	98	1.8143	105	1.9941	95
clear	1.1284	76	1.2409	75	1.7155	68	1.6497	74	1.6705	76	1.4304	80	1.6199	73	1.0574	71	containsKey	2.3132	105	2.1693	123 2.	1343	103 1.8582	94 1	.8726	103 1	.6018	107 1.80	55	1.9452	100	2.3366	89	1.9675	108
contains	2.7568	166	2.4228	165	3.1768	167	3.1552	193	2.1751	162	2.4688	164	2.0128	166	2.1558	168	containsValu	Je 21.5611	2305	7.8032	643 8.	3615	683 8.4957	765 6	.1326	462 7	.3755	692 7.99	12 6	78 9.1771	847	7.9341	714	6.7072	562
containsAll	1.5993	87	1.8053	92	2.1889	92	2.2887	118	1.3244	100	1.3930	96	1.2054	89	1.5091	87	entrySet	2.2878	93	2.2363	116 1.	8531	108 2.1332	10/ 1	.8362	113 1	.7800	97 2.15	1	2.161/	115	1.7087	105	1.4666	102
get	2.0029	83	1.1171	78	1.4918	77	2.0168	109	2.2110	81	1.6613	71	1.8956	86	1.4978	73	get	2.3106	103	1.9972	119 1.	8120	102 1.4071	100 1	.8252	116 1	6262	9/ 1.53	72 1	2.2331	115	1.5252	89	1.7120	103
indexOf	1.4447	76	2.0325	84	1.5682	70	2.6289	101	1.5674	79	1.1944	81	1.8090	81	2.0788	75	kovSot	1 7297	90	2 4999	124 1	6913	114 2 2226	00 1	0220	102 1	1966	02 2.04	20 1	1.5122	110	1.0374	95	1.7135	105
iterateAll	2.0701	79	1.0473	77	1.0103	73	2.6401	107	1.3605	85	1.7822	71	1.6036	81	1.1336	87	nut	1.8591	104	2.4003	102 2	4628	92 1 3123	96 2	0338	103 1	7038	107 2.16	16 1	1 4355	91	2 1204	93	2 5784	105
iterator	1.4893	84	1.1589	84	1.3922	72	1.7666	108	1.9760	73	1.3300	79	2.1895	84	1.6505	83	putAll	1.4147	95	2,2852	122 1	7564	100 1.5949	105 1	8608	113 1	.3097	95 2.14	51 1	2 1.8914	116	2.3094	87	2.0750	108
lastIndexOf	1.7750	99	1.7666	98	2.0383	94	2.5019	127	1.8914	92	1.4211	95	1.2260	84	1.2296	96	remove	1.8574	92	2.2131	105 1.	9256	109 1.6067	97 2	.2300	106 1	.9660	98 2.21	78 1	1.8133	101	1.6888	92	2.4103	103
listIterator	1.4457	76	1.6190	84	1.3737	71	2.5003	106	1.3380	80	1.5176	85	1.6354	69	1.2746	81	values	1.8279	85	2.4690	116 2.	5755	109 2.2266	94 2	.0009	107 1	.9120	111 2.06	92 1	1.4467	105	1.6533	100	2.4628	111
listIteratori	1.7356	78	1.1552	81	1.5160	77	2.1996	105	1.7588	79	1.0334	80	1.8799	85	1.7545	78																			
remove	1.1308	96	1.4480	85	2.1946	162	1.6924	98	1.4560	84	1.1368	85	1.2663	96	1.4973	82																			
removeAll	8.0905	671	7.8108	697	7.3237	666	8.3150	752	7.6148	692	7.9911	664	7.3824	654	7.1281	665																			
removei	1.9135	85	1.3534	92	2.2858	118	1.7174	100	1.6308	85	1.6369	89	1.5850	81	1.5486	90																			
retainAll	2.7037	193	2.7845	200	2.6052	198	2.5982	205	3.0973	197	2.4172	200	2.7635	242	3.4019	245																			
set	0.9476	64	1.5943	70	1.9669	110	2.0474	112	1.5249	76	1.2312	73	1.4938	75	1.4957	72																			
sublist	1.3108	76	1.6021	80	1.4792	80	1.8457	98	1.4910	85	1.5117	71	1.7082	75	0.9414	75																			
toArray	1.6418	84	1.5024	84	2.0934	73	1.6739	106	1.5418	79	1.7455	83	1.5694	69	2.0213	80																			
Green Software Lab																41	Green Software Lab																		42

				Simple	
Is faster, Greener?!		Properties		Bindings	
	Methods 🔽	J	ms	J	ms
	clear	2.0777	98	2.1401	106
Slower	containsKey	1.6018	107	1.8055	99
	containsValue	7.3755	692	7.9912	678
Faster	entrySet	1.7800	97	2.1557	102
	get	1.7851	97	1.5359	100
	iterateAll	1.6362	100	2.0472	116
	keySet	1.4866	92	2.0630	106
	put	1.7038	107	2.1646	102
	putAll	1.3097	95	2.1461	112
	remove	1.9660	98	2.2178	106
Is slower, Greener!!	values	1.9120	111	2.0692	108

Research Questions

- (RQ1) Can we define an energy consumption quantification of Java data structures and their methods?
- (RQ2) Can we use such quantification to decrease the energy consumption of software systems?

Optimizing Energy Consumption of Java Programs

Methodology

- 1. Compute which implementations/methods are used in the programs
- 2. Look up the appropriate energy tables for the used implementations/methods
- 3. Choose the most energy efficient alternative

Optimizing Energy Consumption of Java Programs

Applying the methodology - Data acquisition

- Obtained Java projects of a Journalism support platform
 - First year OO course
 - Collaborators, Journalists, Readers, Editors
 - Write chronicles and reports
 - Give likes and comments
 - Etc.
- Average of
 - 36 classes
 - 104 methods
 - 2000 lines of code

Optimizing Energy Consumption of Java Programs

Applying the methodology - Data acquisition

- Obtained 7 test cases to simulate usage
 - Size varied vetween 2000-10000 for each test case/each entity
- Chosen popsize 25,000 (smallest)
- Applied methodology on 5 projects
 - ► Detected usage of any JCF implementation
 - > Detected which methods were used for each implementation
 - Chose the most efficient implementation for each project
 - Measured the changes before and after

Applying the methodology - Example

Projects	es nized	1		Methods	3				
1	TreeMa	p Hasht	table	16	{containsK	.ey, get, p	ut, values}		
Con	current Concur	rent	L	inked		Simple		Wea	k
	CopyOn V ArrayList	Vrite	LinkedList	RoleList	Role Unresolved List	Stack	Vector		
Methods 📊	J		J		J	J	J	J	J
add	0.9773	1.1510	1	.7839	1.8016	1.4801	1.1865	1.5659	1.5177
listIterator	1.4457	1.6190	1	.3737	2.5003	1.3380	1.5176	1.6354	1.2746
Total	2.4229	2.7700	3	.1575	4.3018	2.8181	2.7041	3.2012	2.7923

Optimizing Energy Consumption of Java Programs

Applying the methodology - Results

Results of pre and post optimization

	D							
Projects	Origina	al	Optimiz	ed	Improvement			
	J	ms	J	ms	J	ms		
1	23.744583	1549	22.7071302	1523	4.37%	1.68%		
2	24.6787895	1823	23.525123	1741	4.67%	4.50%		
3	25.0243507	1720	22.259355	1508	11.05%	12.33%		
4	17.1994425	1258	16.2014997	1217	5.80%	3.26%		
5	19.314512	1372	18.3067573	1245	5.22%	9.26%		

- Between 4.37% 11.05%
- Average of 6.2%

FW + Conclusion

- Presented detailed study of the energy consumption of Sets, Lists, and Maps Quantification of the energy spent by each method (RQ1 Answer)
- Introduced a very simple methodology to optimize Java programs (RQ2 Answer)
- Consider other object types (int, objects, etc.)
- Implement an automatic refactoring plugin
- Found @ our page: http://greenlab.di.uminho.pt/

Spectrum-based Fault Localization (SFL)

Can we detect energy hotspots in source code?

SPELL		Component Similarity $\phi_j = (\alpha_1(A(j), e), \alpha_2(A(j), e), \alpha_3(A(j), e))$ $\sum_{i=1}^{n} \min(A(j, x)_i, e(x)_i)$	SPELL - initial studies	
$\begin{array}{c} \mbox{Hit Spectrum} \\ \mbox{Hit Spectrum} = \begin{pmatrix} \mbox{Energy} \\ \mbox{Number} \\ \mbox{Time} \end{pmatrix} \\ \mbox{where Energy} = \\ \mbox{\{E}_{\mbox{CPU}}, \mbox{E}_{\mbox{DRAM}}, \mbox{E}_{\mbox{Buss}}, \mbox{E}_{\mbox{BIT}}, \mbox{E}_{\mbox{CPU}}, \mbox{E}_{\mbox{RUP}}, \mbox{E}_$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	where $\alpha_x(A(j), e) = \sum_{i=1}^{n} \max(A(j,i), e(i))$ Ψ 2466 $\psi_j = \alpha(global_c, global_e)$ $\psi_j = \alpha(global_c, global_e)$ where $\alpha(c, e) = \sum_{i=1}^{n} \max(c_i, e_i)$ $\sum_{i=1}^{n} \max(c_i, e_i)$ 1450	100.0 10	Project 6 Control SPELL Profiler 21.7 22 15.1 14 12.5 15 -6.1 -8 Control SPELL Profiler -194.2
$ \begin{array}{l} \textbf{Global Error Vector} \\ \texttt{global}_{t}(i) = \sum_{j=1}^{m} \texttt{global}_{t}(\lambda_{i,j}) \\ \texttt{where } \texttt{global}_{c}(\lambda_{i,j}) = EF_{i,j} \times T_{i,j} \times N_{i,j} \end{array} $	$ \begin{array}{c} t\\ s\\ c4\\ \begin{pmatrix} 42\\ 1\\ 34 \end{pmatrix} \begin{pmatrix} 44\\ 1\\ 37 \end{pmatrix} \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix} \begin{pmatrix} 61\\ 2\\ 43 \end{pmatrix} \begin{pmatrix} 65\\ 2\\ 60 \end{pmatrix} \begin{pmatrix} 0.2623\\ 0.1875\\ 0.1444 \end{pmatrix} 0. \\ \hline \\ e \\ \begin{pmatrix} 140\\ 4\\ 211 \end{pmatrix} \begin{pmatrix} 166\\ 7\\ 259 \end{pmatrix} \begin{pmatrix} 129\\ 3\\ 218 \end{pmatrix} \begin{pmatrix} 164\\ 72\\ 222 \end{pmatrix} \begin{pmatrix} 209\\ 11\\ 222 \end{pmatrix} \begin{pmatrix} 104\\ 129\\ 295 \end{pmatrix} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{\text{Error Vector}}{e = \left[\sum_{j=1}^{m} \lambda_{1,j} \ \sum_{j=1}^{m} \lambda_{2,j} \ \cdots \ \sum_{j=1}^{m} \lambda_{n,j}\right]^{T}}{\text{where } \sum_{j=1}^{m} \lambda_{i,j} = \left(\sum_{j=1}^{m} E_{i,j}, \sum_{j=1}^{m} N_{i,j}, \sum_{j=1}^{m} T_{i,j}\right)}$	 Developers found the information to be very useful Spent on average 43% less time Produced more energy efficient programs (26% less energy on average) SPELL is: Language independent Multi largel anglueir. 	-282
Software Lab		53	 Multi level analysis Multi hardware component analysis Points to probable hot spots in source code 	54