
João Saraiva

2020/2021

Departamento de Informática
Universidade do Minho, Portugal

Software Analysis and Testing

Green Software

Going Green

2

+ =

Global energy system is unsustainable

3

Green Computing

4

▶ Caught the attention of many companies allowing them to save:

“close to 50% of the energy costs of an organization can be attributed to
the IT departments”

- [PICMET, 2009]

“up to 90% of energy used by ICT hardware can be attributed to software”

- [The Greenhouse Gas Protocol Report, 2013]

Green Software

▶ Reducing energy consumption through software analysis and optimization

▶ Problem:
▶ How to analyze
▶ How to interpret
▶ How to improve

5

Green Software

▶ Problems (extended to programmers):
▶ How to analyze
▶ How to interpret
▶ How to improve

6

Mining questions about software energy consumption

- [MSR’14]
Integrated energy-directed test suite optimization

- [ISTA’14]
Seeds: A software engineer’s energy-optimization decision

support framework - [ICSE’14]

Energy vs. Power

7

▶ Power (w) – rate (or effort) at which that work is done

▶ Energy (J) – amount of work done

▶ Power can change constantly while Energy is the accumulation

Energy = Power x Seconds

Power

Energy

100W360,000 J = x 3,600s

Which languages are the most energy
efficient?

Motivation

9

▶ Understanding the energy efficiency of programming languages

Is a faster language always a more energy efficient one?

Are there languages which run slower while consuming less energy?

Which are the most energy efficient languages?

How much energy consumption is attributed to CPU?

What paradigms are most energy efficient?

How much energy does memory usage consume?

Comparing Programming Languages

10

C Java Haskell Fortran

= = =

* Formerly known as The Great Computer Language Shootout

The Computer Language Benchmarks Game (CLBG)

11

▶ Project to compare programming languages
▶ 28 different programming languages
▶ 13 different benchmarks

▶ Experts compete to code the fastest solution

▶ Same underlying algorithms

▶ Publicly available:
▶ Source Code
▶ Compiler Versions
▶ Optimization Flags

▶ Comparable and easily replicable programs/solutions!

Design

12

13

▶ Running Average Power Limit (RAPL)

▶ Designed by intel for i5/i7 architectures (SandyBridge, IvyBridge, Haswell, etc)

▶ Monitors energy consumption info for Machine-Specific Registers (MSRs)

▶ Allows very precise and fine-grain measurements through function calls
▶ DRAM/GPU
▶ CPU
▶ Package

Energy

Measurements

▶ Unix’s time tool
Peak Memory

14

Execution

▶ Linux Ubuntu 16.0 4.8.0-22-generic

▶ 16GB Ram

▶ Intel(R) Core(TM) i5-4460 CPU @ 3.40GHz

▶ Compiler versions: https://sites.google.com/view/energy-efficiency-languages/setup

▶ Source Code: http://benchmarksgame.alioth.debian.org/

▶ Compile

▶ 27 Languages x 10 Benchmarks = 270 Results

-> Run -> Measure

15

Results

16

Energy vs. Time

Energy vs. Memory

Energy vs. Time vs. Memory

17

Energy vs. Time

18

Energy vs. Time

19

Energy vs. Time

20

Energy vs. Time

CPU-based Energy

Avg Min Max

Compiled 88.94% 85.27% 91.75%

Interpreted 87.98% 81.57% 92.90%

VM 88.94% 86.10% 92.43%

21

Energy vs. Time

Average

Joules ms

Compiled 120 5103

VM 576 20623

Interpreted 2365 87614

Average

Joules ms

Imperative 125 5585

OO 879 32975

Functional 1367 42740

“Scripting” 2320 88322

57J

4604J

2019ms

167416ms

22

Energy vs. Time

Average

Joules ms

Compiled 120 5103

VM 576 20623

Interpreted 2365 87614

Average

Joules ms

Imperative 125 5585

OO 879 32975

Functional 1367 42740

“Scripting” 2320 88322

23

Energy vs. Memory

Average

Mb

Compiled 125

VM 285

Interpreted 426

Average

Mb

Imperative 116

OO 249

Functional 251

“Scripting” 421

66Mb

1309Mb

24

Energy vs. Memory

25

Energy vs. Memory

▶ Spearman rank-order correlation coefficient

▶ Spearman p = 0.2091

+1 = perfect positive -1 = perfect negative0 = no relationship

0.3 = weak uphill

p = 0.2091

26

Energy vs. Time vs. Memory

27

Energy vs. Time vs. Memory (Pareto Optimization)

28

Wrap Up

▶ General ranking of programming languages

▶ Unexpected results

▶ Time and Energy are not always proportional

▶ C is still the King (Rust is close behind)

29

Wrap Up

▶ General ranking of programming languages

▶ Unexpected results

▶ Time and Energy are not always proportional

▶ C is still the King (Rust is close behind)

Future Work
▶ Add new languages

▶ Update certain compilers

▶ Measure continuous RAM usage

▶ Suggestions?

30

Can we save energy by refactoring Java
programs to use different data structure
implementations?

31

Research Questions

▶ (RQ1) Can we define an energy consumption quantification of Java data
structures and their methods?

▶ (RQ2) Can we use such quantification to decrease the energy consumption
of software systems?

32

Towards a Ranking of Java data structures

Design

▶ Simple scenario of:
▶ Storing
▶ Retrieving
▶ Deleting

▶ String values

33

▶ Java Collections Framework (JCF) library

Towards a Ranking of Java data structures

Design – Data Structures

34

Towards a Ranking of Java data structures

Design - Methods

35

▶ Defined population sizes (popsize) of
▶ 25,000
▶ 250,000
▶ 1,000,000

▶ When a second data structure is needed (i.e. addAll)
▶ SecondaryCol = 10% of popsize
▶ Half existing & half new (shuffled)

Design - Benchmark

Towards a Ranking of Java data structures

36

▶ Linux 3.13.0-74-generic OS

▶ 8GB Ram

▶ Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz

▶ Java Interpreter/Compiler versions 1.8.0_66

▶ RAPL/jRAPL

Execution - Specifications

Towards a Ranking of Java data structures

37

▶ Warm-up
▶ Instantiated
▶ Populated w/ popsize
▶ Performed simple actions on the data structure

▶ Each test x20
▶ Extracted time/Joules consumed
▶ Removed lowest/highest 20%

▶ 336 different test (Collection.method) configurations

▶ 6720 executions for each popsize

▶ 20,000+ different executions

Execution – For every test

Towards a Ranking of Java data structures

38

Results (25k pop)

Towards a Ranking of Java data structures

39

Towards a Ranking of Java data structures

40

Towards a Ranking of Java data structures

41

Towards a Ranking of Java data structures

42

Is faster, Greener?!

Is slower, Greener?!

Faster

Slower

43

Research Questions

▶ (RQ1) Can we define an energy consumption quantification of Java data
structures and their methods?

▶ (RQ2) Can we use such quantification to decrease the energy consumption
of software systems?

44

Optimizing Energy Consumption of Java Programs

Methodology

1. Compute which implementations/methods are used in the programs

2. Look up the appropriate energy tables for the used implementations/methods

3. Choose the most energy efficient alternative

45

Optimizing Energy Consumption of Java Programs

Applying the methodology – Data acquisition

▶ Obtained Java projects of a Journalism support platform

▶ First year OO course

▶ Collaborators, Journalists, Readers, Editors

▶ Write chronicles and reports

▶ Give likes and comments

▶ Etc.

▶ Average of

▶ 36 classes

▶ 104 methods

▶ 2000 lines of code

46

Optimizing Energy Consumption of Java Programs

Applying the methodology – Data acquisition

▶ Obtained 7 test cases to simulate usage

▶ Size varied vetween 2000-10000 for each test case/each entity

▶ Chosen popsize – 25,000 (smallest)

▶ Applied methodology on 5 projects

▶ Detected usage of any JCF implementation

▶ Detected which methods were used for each implementation

▶ Chose the most efficient implementation for each project

▶ Measured the changes before and after

47

Optimizing Energy Consumption of Java Programs

Applying the methodology – Example

48

Optimizing Energy Consumption of Java Programs

Applying the methodology – Results

▶ Between 4.37% - 11.05%

▶ Average of 6.2%

49

FW + Conclusion

▶ Presented detailed study of the energy consumption of Sets, Lists, and Maps
▶ Quantification of the energy spent by each method (RQ1 Answer)

▶ Introduced a very simple methodology to optimize Java programs (RQ2 Answer)

▶ Consider other object types (int, objects, etc.)

▶ Implement an automatic refactoring plugin

▶ Found @ our page: http://greenlab.di.uminho.pt/

50

Can we detect energy hotspots in source code?

51

Spectrum-based Fault Localization (SFL)

52

Error vector

Oracle

Low

High

Energy

Energy

Energy

Energy

Problem: Energy cannot be defined as binary values

SPELL

53

SPELL – initial studies

54

▶ Developers found the information to be very useful
▶ Spent on average 43% less time
▶ Produced more energy efficient programs (26% less energy on average)

▶ SPELL is:
▶ Language independent
▶ Multi level analysis
▶ Multi hardware component analysis
▶ Points to probable hot spots in source code

