
Towards heterogeneous
computing in C++

A short report on CERN openlab with Intel

Motivation

 Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson. 2018. A domain-specific architecture for
deep neural networks. <i>Commun. ACM</i> 61, 9 (September 2018), 50–59.
DOI:https://doi.org/10.1145/3154484

https://doi.org/10.1145/3154484

Heterogeneous platform overview

source: https://www.csl.cornell.edu/~zhiruz/research.html

GPU programming
interfaces for C/C++

Parallel computing in C/C++

NVidia - CUDA C/C++

void saxpy(int n, float a, float *
restrict x, float * restrict y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

__global__ void saxpy(int n, float a,
float * restrict x, float * restrict y)

{

 int i = blockIdx.x*blockDim.x +
threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

● Development since 2006
● Large community
● Widely used in industry, well documented
● C/C++ syntax, extra keywords
● Not open-source
● CUDA Toolkit includes additional libraries

Khronos Group - OpenCL

● Initial release in 2009 (current version 3.0.)
● Open-source, royalty-free
● Less widespread than CUDA, still relatively large community
● Cross-platform
● Kernels written in C or C++ (as of OpenCL 2.2.), extra keywords

__kernel void saxpy(const unsigned int n,
const float a,

 __global float* x,
__global float* y){

int i = get_global_id(0);
if(i < n)

y[i] = a * x[i] + y[i];
"}

void saxpy(int n, float a, float *
restrict x, float * restrict y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

An open road to a new
model?

The SYCL specification

● Released by Khronos Group
● Open-source, active collaboration between industrial partners
● Single-source model, more accessible
● Standard C++, no extra keywords needed
● Support several architectures, OpenCL and CUDA backends as well
● Still under development, documentation is not always searchable, few examples

provided
● Small community

Implementation of SYCL compilers

SYCL Present and Future Roadmap (may change)

from Heterogeneous Programming in C++ with SYCL 2020 - Michael Wong & Gordon Brown - CppCon 2020

CERN Openlab - a unique
public-private partnership

A collaboration between leading ICT
companies and CERN

● Partners like Google, IBM, Intel, Oracle, Siemens and Micron
● Several research areas:

○ Data-centre technologies and infrastructure
○ Computing performance and software
○ Machine learning and data analytics
○ Quantum technologies
○ Applications in other disciplines

Intel and oneAPI

Summer student presentations

For more information, slides and recordings, visit: https://indico.cern.ch/event/955133/timetable/#20200924

https://indico.cern.ch/event/955133/timetable/#20200924

Heterogeneous computing
for the ATLAS Offline

Software

ATLAS detector

Seed finding in ATLAS (and Acts)

An initial step of tracking (inside-out)

● Tracking starts with Space Point formation
from local measurements on sensitive devices
(silicon detectors)

● Physical effects (multiple scattering, energy
loss)

● Duplet and triplet formation of hits on
detectors, filtering the seeds

Acts Common Tracking Software

Acts is an

experiment-independ

ent toolkit for

(charged) particle

track reconstruction

in (high energy)

physics experiments

implemented in

modern C++.

github: https://github.com/acts-project/acts, docs: https://acts.readthedocs.io/en/latest/

https://github.com/acts-project/acts
https://acts.readthedocs.io/en/latest/

Evaluation

Experimental setup:

● CPU: Intel® Core™ i9-9900K Processor (16M Cache, up to 5.00 GHz)
● GPU: Nvidia GeForce RTX 2060 6GB GDDR6

Code, data and graphs are available at: https://github.com/czangela/openlab2020

https://github.com/czangela/openlab2020

Heterogeneous computing

The code ran successfully on the following
architectures:

OpenCL backends:

● Intel Gen9 Integrated Graphics
● Intel Gen12 Discrete Graphics

(DG-1 card, accessed through Intel’s devcloud)

CUDA backends:

● Turing and Pascal architectures (3 different
devices)

Compiler: dpc++ (custom built clang based compiler from https://github.com/intel/llvm/)
Clang version: 12.0.0. (date: 24/08/2020)
CUDA version: 10.1.

https://github.com/intel/llvm/

Questions?

Further reading, resources

[1] CppCon 2018: Gordon Brown “A Modern C++ Programming Model for GPUs using Khronos SYCL”

https://youtu.be/miqZS6aS9K0

[2]Heterogeneous Programming in C++ with SYCL 2020 - Michael Wong & Gordon Brown - CppCon 2020

https://youtu.be/fxCnpNVPazk

[3]Intel oneAPI https://www.oneapi.com/

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

https://youtu.be/miqZS6aS9K0
https://youtu.be/fxCnpNVPazk
https://www.oneapi.com/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

Backup

Comparison with CUDA algorithm

Contribution
Introductory speech about SYCL and the seed
finding algorithm to the Acts group as part of their
parallelization discussion.

Contributed to the development of DPC++
compiler by providing feedback in form of issues.
https://github.com/intel/llvm/issues/2328

https://github.com/intel/llvm/issues/2353

https://github.com/intel/llvm/issues/2376

Discussed further development directions and
technical difficulties with Codeplay Software.
https://indico.cern.ch/event/955809/

https://github.com/intel/llvm/issues/2328
https://github.com/intel/llvm/issues/2353
https://github.com/intel/llvm/issues/2376
https://indico.cern.ch/event/955809/

