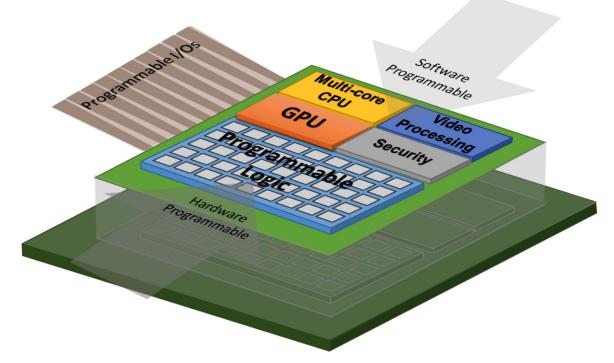


Towards heterogeneous computing in C++

A short report on CERN openlab with Intel


Motivation

Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson. 2018. A domain-specific architecture for deep neural networks. <i>Commun. ACM</i> 61, 9 (September 2018), 50–59.

DOI:https://doi.org/10.1145/3154484

Heterogeneous platform overview

source: https://www.csl.cornell.edu/~zhiruz/research.html

GPU programming interfaces for C/C++

Parallel computing in C/C++

NVidia - CUDA C/C++

- Development since 2006
- Large community
- Widely used in industry, well documented
- C/C++ syntax, extra keywords
- Not open-source
- CUDA Toolkit includes additional libraries

```
NVIDIA.
CUDA
```

```
void saxpy(int n, float a, float *
restrict x, float * restrict y)
{
  for (int i = 0; i < n; ++i)
     y[i] = a*x[i] + y[i];
}</pre>
```

```
_global__ void saxpy(int n, float a,
float * restrict x, float * restrict y)
{
    int i = blockIdx.x*blockDim.x +
    threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];</pre>
```

Khronos Group - OpenCL

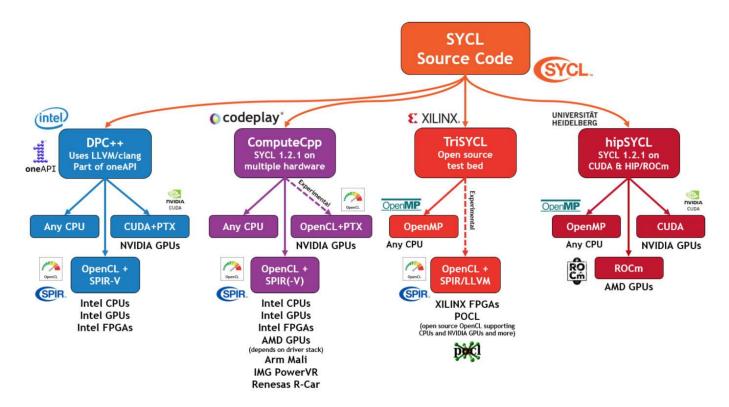
- Initial release in 2009 (current version 3.0.)
- Open-source, royalty-free
- Less widespread than CUDA, still relatively large community
- Cross-platform
- Kernels written in C or C++ (as of OpenCL 2.2.), extra keywords

```
void saxpy(int n, float a, float *
restrict x, float * restrict y)
{
  for (int i = 0; i < n; ++i)
     y[i] = a*x[i] + y[i];
}</pre>
```



```
OpenCL
```

```
"}
```



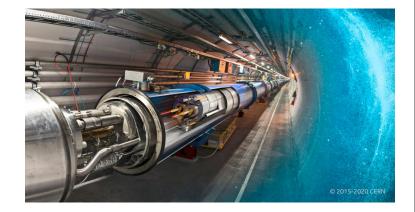
An open road to a new model?

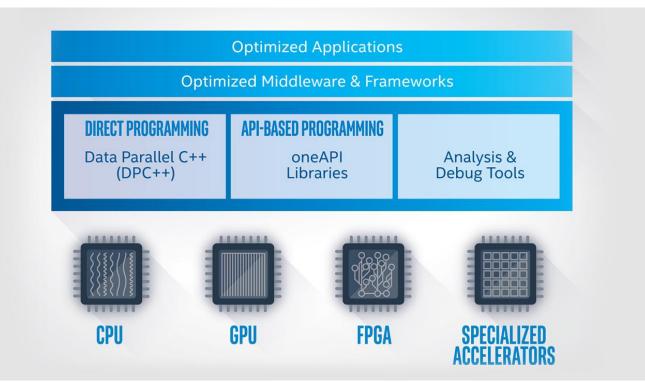

The SYCL specification

- Released by Khronos Group
- Open-source, active collaboration between industrial partners
- Single-source model, more accessible
- Standard C++, no extra keywords needed
- Support several architectures, OpenCL and CUDA backends as well
- Still under development, documentation is not always searchable, few examples provided
- Small community

Implementation of SYCL compilers

SYCL Present and Future Roadmap (may change)


from Heterogeneous Programming in C++ with SYCL 2020 - Michael Wong & Gordon Brown - CppCon 2020

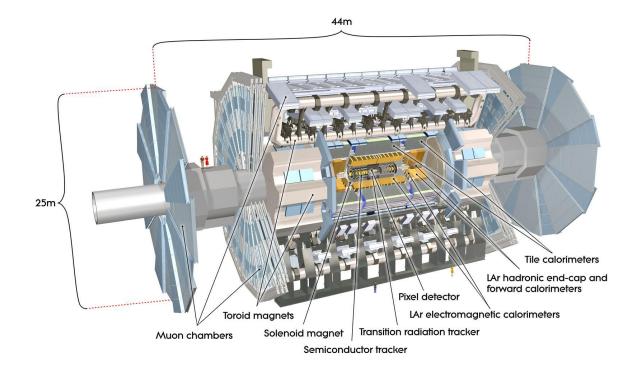

CERN Openlab - a unique public-private partnership

A collaboration between leading ICT companies and CERN

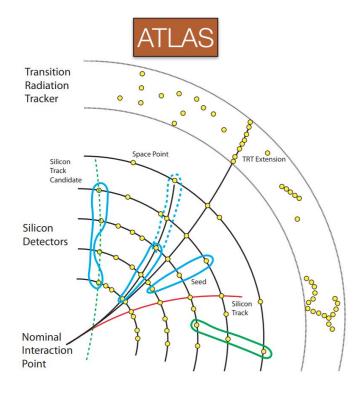
- Partners like Google, IBM, Intel, Oracle, Siemens and Micron
- Several research areas:
 - Data-centre technologies and infrastructure
 - Computing performance and software
 - Machine learning and data analytics
 - Quantum technologies
 - Applications in other disciplines

Intel and oneAPI

Summer student presentations


Using Intel oneAPI for Reconstruction algorithms	Laura Capelli et al.	Ø		
Zoom	17:31 - 17:	40		
Anomaly Detection with Spiking Neural Networks	Bartłomiej Borzyszkowski	0		
Zoom	17:41 - 17:48			
Intel oneAPI Integration Tests With the ATLAS Offline Software	Angéla Czirkos	Ø		
Zoom	17:48 - 17:	55		
Heterogeneous computing for Deep Learning: deploying generative models via Intel OneAPI	Silke Donayre	Ø		
Zoom	17:56 - 18:	03		
Inference engine for custom neural networks with oneAPI	Marcin Swiniarski	0		
Zoom	18:03 - 18:	10		

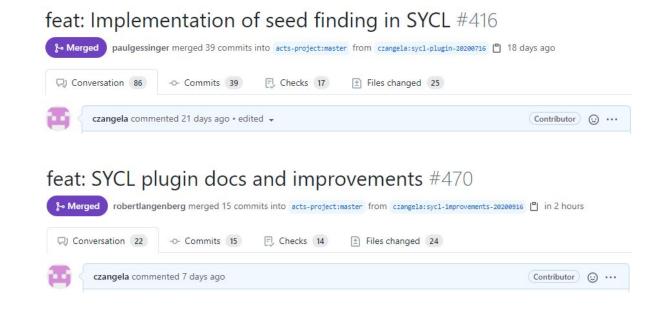
For more information, slides and recordings, visit: <u>https://indico.cern.ch/event/955133/timetable/#20200924</u>



Heterogeneous computing for the ATLAS Offline Software

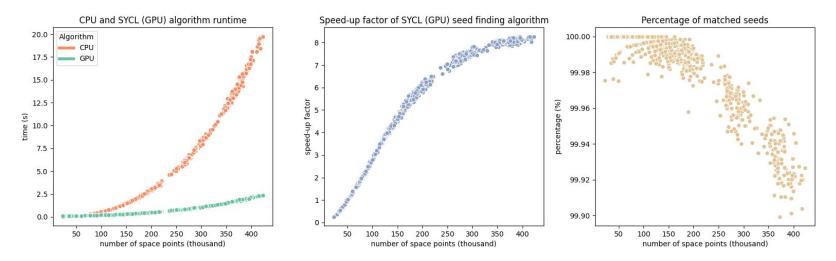
ATLAS detector

Seed finding in ATLAS (and Acts)



An initial step of tracking (inside-out)

- Tracking starts with Space Point formation from local measurements on sensitive devices (silicon detectors)
- Physical effects (multiple scattering, energy loss)
- Duplet and triplet formation of hits on detectors, filtering the seeds


Acts Common Tracking Software

Acts is an experiment-independ ent toolkit for (charged) particle track reconstruction in (high energy) physics experiments implemented in modern C++.

github: https://github.com/acts-project/acts, docs: https://acts.readthedocs.io/en/latest/

Evaluation

Experimental setup:

- CPU: Intel[®] Core[™] i9-9900K Processor (16M Cache, up to 5.00 GHz)
- GPU: Nvidia GeForce RTX 2060 6GB GDDR6

Code, data and graphs are available at: <u>https://github.com/czangela/openlab2020</u>

Heterogeneous computing

The code ran successfully on the following architectures:

OpenCL backends:

- Intel Gen9 Integrated Graphics
- Intel Gen12 Discrete Graphics

(DG-1 card, accessed through Intel's devcloud) CUDA backends:

• Turing and Pascal architectures (3 different devices)

		per INFO		g on: GeForce RTX 2060
			acts_data/a	tlas_seeds/pu200/evt10.txt
Preparation				
Analyzed 260	groups f	or CPU		
Analyzed 260	groups f	or SYCL		
		Time Me	etric	
	Device:	CPU	SYCL	Speedup/ Agreement
Т	ime (s):	13.410339	1.727260	7.763938
Seed	ls found:	171516	171516	99.952774

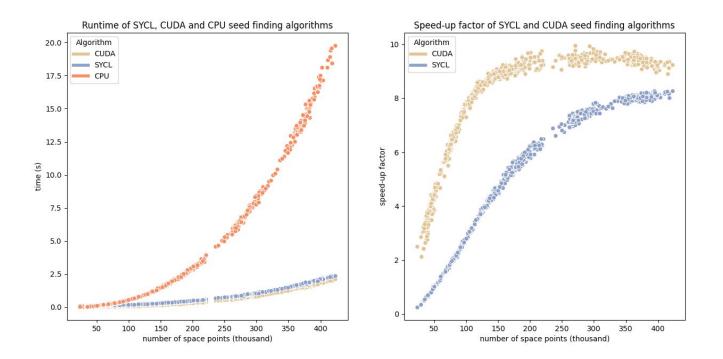
00:15:00	QueueWrapper	INFO	Runnin	g on: Inte	el(R)	Gen9 HD	Graphics	NEO
read 189600	SP from file	/atlas/ad	ts data/a	tlas seeds	s/pu10	0/evt10	.txt	
Preparation	time: 0.36315	52						
Analyzed 260) groups for (CPU						
Analyzed 260	groups for S	SYCL						
Time Metric								
	Device:	CPU	SYCL	Speedup/	Agree	ment		
, i i i i i i i i i i i i i i i i i i i	Fime (s): 2.	779144	1.456242		1.90	8436		
See	ds found:	73698	73698		99.96	4722		

Compiler: dpc++ (custom built clang based compiler from <u>https://github.com/intel/llvm/</u>) Clang version: 12.0.0. (date: 24/08/2020) CUDA version: 10.1.

Questions?

Further reading, resources

[1] CppCon 2018: Gordon Brown "A Modern C++ Programming Model for GPUs using Khronos SYCL" <u>https://youtu.be/miqZS6aS9K0</u>


[2]Heterogeneous Programming in C++ with SYCL 2020 - Michael Wong & Gordon Brown - CppCon 2020 <u>https://youtu.be/fxCnpNVPazk</u>

[3]Intel oneAPI https://www.oneapi.com/

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

Comparison with CUDA algorithm

Contribution

Introductory speech about SYCL and the seed finding algorithm to the Acts group as part of their parallelization discussion.

Contributed to the development of DPC++ compiler by providing feedback in form of issues. <u>https://github.com/intel/llvm/issues/2328</u> <u>https://github.com/intel/llvm/issues/2353</u> <u>https://github.com/intel/llvm/issues/2376</u>

Discussed further development directions and technical difficulties with Codeplay Software. https://indico.cern.ch/event/955809/

ACTS parallelization discussion Friday 28 Aug 2020, 16:00 → 17:00 Europe/Zurich This event will happen through ACTS Skype group: https:// Description 16:00 Acts SeedFinder SYCL plugin $\rightarrow 16:20$ Speakers: Angela Czirkos, Attila Krasznahorkay (CERN) seedfinding_in_sycl.... **Profiling Screenshots** Experience With SYCL Based Seedfinding in Acts 17:10 $\rightarrow 17.30$ A short summary of our experiences with SYCL in the Acts project. Speakers: Angela Czirkos, Attila Krasznahorkay (CERN) SYCL Based Seed Fi.,