
Introduction to Code-Level Timing Analysis

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

2020-11-18

WCET Tutorial 2020-11-18

Mälardalen University (MDH)

• Regional university, 100 km west of Stockholm

• Twin campus Västerås/Eskilstuna

• 16000 students, 900 employees, 70+ professors

WCET Tutorial 2020-11-18 1

Embedded Systems @ MDH

• The most prominent research environment at MDH

• Research adressing different aspects of embedded systems software and
real-time

• 19 research groups

• > 20 full professors, > 50 senior researchers, ∼ 100 PhD students

• More info at www.es.mdh.se

WCET Tutorial 2020-11-18 2

The Programming Languages Group

A research group within Embedded Systems, headed by me

Research mainly in static program analysis for embedded software

Especially for real-time properties: Worst Case Execution Time (WCET)
Analysis, but also for other purposes

See

www.es.mdh.se/research-groups/30-

WCET Tutorial 2020-11-18 3

Real-Time Systems

Many embedded systems are real-time systems. These have timing
constraints:

Event

Maximal response time

They appear in many domains, like for instance:

• Vehicular (automotive, avionics, trains, . . .)

• Telecom, home entertainment

• Medical devices

Interesting to verify that the systems really meet their timing requirements

WCET Tutorial 2020-11-18 4

Hard and Soft Real-Time Systems

Two classes:

• Hard real-time systems: timing constraints must be met (typically
safety-critical systems)

– (vehicles, life-supporting equipment, . . .)

• Soft real-time systems: desirable that timing constraints are met (but not
absolutely necessary)

– (telecom, home entertainment, . . .)

WCET Tutorial 2020-11-18 5

Verifying Timing Constraints

Real-time systems are often structured into tasks, which are run according
to some scheduling policy. E.g., fixed-priority :

T2

T3

T2

2

1

T3 T3

3 T1 T1 T1

priority

time

Timing verification divided into two levels:

• System-level, assuming knowledge of execution times of tasks

• Code-level, finding out about execution times of tasks

Example: verify that, for sure, a deadline always is met (system level)

WCET Tutorial 2020-11-18 6

Code-Level Timing Analysis

Find out the timing properties of a piece of code (task) running on some
given hardware

System-level analysis uses results from code-level analysis

In particular: estimates of the Worst-Case Execution Time (WCET):

BCET WCET

Safe WCET estimates here

Actual execution times here

WCET = longest running time of a sequential program running uninterrupted
on a certain hardware

WCET Tutorial 2020-11-18 7

Safe WCET Estimates

WCET estimates that do not underestimate the real WCET are safe

If a system-level analysis using safe WCET estimates says that a deadline
surely is met, then this is surely true

Very important for hard real-time systems – provides a mathematical proof
that the timing requirements are met

Much higher confidence than for testing only

WCET Tutorial 2020-11-18 8

WCET Analysis

WCET Analysis = estimating the WCET

A safe WCET analysis will never underestimate the real WCET

BCET WCET

Safe WCET estimates here

Actual execution times here

WCET Tutorial 2020-11-18 9

Different Approaches

Based on testing/measurements:

• Pros: easy to automate and apply

• Cons: safety not guaranteed (may underestimate WCET)

• Cons: requires a running system

Based on formal models (static program analysis):

• Pros: can give provably safe WCET estimates

• Pros: code does not have to run, sufficient to have formal models

• Cons: hard to automate completely (Turing’s Halting Problem), can be
hard to get tight WCET estimates, may be laborious to apply

WCET Tutorial 2020-11-18 10

Static WCET Analysis: The Standard Setup

Must in principle explore all paths in the program

There can be very many paths

Must thus make controlled approximations to obtain an estimate in
reasonable time

Thus, WCET analysis is typically broken down into the following steps:

• Constrain possible program flows (flow analysis)

• Estimate hardware impact to bound WCET for program fragments
(low-level analysis)

• Use information to produce a safe WCET estimate (calculation)

WCET Tutorial 2020-11-18 11

Structure of WCET analysis

Low−level
analysis

Calculation

Flow analysis

Annotations

HW timing model

Program

source

Object code

Compiler

Value analysis
WCET
estimate

WCET Tutorial 2020-11-18 12

Flow Analysis

Purpose: to automatically discover constraints on program flow

1. Bounds on # of loop iterations:

i = 1;
while i < 100 do

....
i = i+2

All loops must be bounded in order to find a finite WCET estimate

2. Infeasible path constraints can yield sharper WCET estimates:

if i < 5 then ...
....

if i > 7 then ...

Flow analysis is hard to automate completely (halting problem)

WCET Tutorial 2020-11-18 13

Low-Level Analysis

Finds upper bounds to local WCETs for basic blocks (short instruction
sequences):

i := 0 start

i < n

i < n−10

stop
false

B1 B2

falsetrue

i := i+1

true

37

29

42

44

187 233

Uses hardware timing model for instructions

WCET Tutorial 2020-11-18 14

A Difficulty

Modern hardware can have complex timing models:

• Pipelined instruction execution

• Caches

• Out-of order instruction execution (superscalar)

• Branch prediction

• etc. . .

Typically makes basic block execution times dependent on hardware state

A safe analysis must use the worst execution time, which may vary widely:
can yield large pessimism. Much research how to mitigate this

WCET Tutorial 2020-11-18 15

Calculation

Combining flow information and local WCET bounds

Three different approaches:

• Tree-based. Based on high-level program syntax tree, presumes
well-structured code. Fast but somewhat imprecise.

• Path-based. Local search over all paths in loop bodies to find local
execution time maxima. More precise than tree-based.

• Implicit Path Enumeration. Constraint-based approach, computes
WCET estimate with Integer Linear Programming (ILP). General, and
precise.

WCET Tutorial 2020-11-18 16

State of the Practice

Tools exist (commercial, and research prototypes), like:

• aiT (absInt GmbH, commercial)
• RapiTime (Rapita Systems Ltd, commercial)
• Bound-T (Tidorum Oy, was commercial: now open source)
• SWEET (MDH, academic)
• TuBound (TU Vienna, academic)
• Chronos (NU Singapore, academic)
• Heptane (Rennes, academic)
• Otawa (Toulouse, academic)

Used mainly in automotive and avionics

Fairly complex processors can be handled, but analysis times can be long

No multicore yet

Level of automation is still a problem

WCET Tutorial 2020-11-18 17

Future Trends

A major challenge: the shift to parallel hardware and software

Opens several cans of worms:

• Shared hardware resources can yield very unpredictable execution times

• Parallel programs can suffer from race conditions, deadlocks

• Not possible anymore to structure the analysis into three distinct phases

Hot research area, but results are still restricted

Current parallel hardware designs and programming paradigms are just not
timing-predictable

Safety-critical parallel systems require timing-predictable hardware and
software architectures!

WCET Tutorial 2020-11-18 18

An Example: Multi-Core Processors

A vanilla multicore processor:

CPU

CPU

Memory

CPU

CPU

A number of processor cores, and a memory connected by a bus

WCET Tutorial 2020-11-18 19

Why Timing Analysis Becomes Problematic

CPU

CPU

CPU

Memory

CPU

Consider a task running on a core in a multicore system

WCET Tutorial 2020-11-18 20

CPU

CPUCPU

CPU

MemoryBus

Shared resources!

The core will now share resources with other cores

WCET Tutorial 2020-11-18 21

CPU

CPUCPU

CPU

MemoryBus

When making a memory access, it will have to compete with the other cores
for the shared resources needed

Memory access times thus become dependent on what is running on the
other cores! A safe worst case access time can be very pessimistic. Can
yield very pessimistic WCET bounds

WCET Tutorial 2020-11-18 22

A Possible Solution

CPU

Memory

Local

mem.

Local

mem.

Local

mem.

Local

mem.

CPU

Under

scheduling

control

CPU

CPU

Add local memories (scratchpads). Store local data there. Only shared data
in the shared memory

Let each core have a reserved time slot for accessing bus + memory

Problem: multi-cores are not built like this

No good solution exists for currently available multi-cores

WCET Tutorial 2020-11-18 23

Conclusions

Code-level timing analysis is an important tool for verifying timing properties
in safety-critical systems

WCET analysis is the most important analysis for this purpose

Can handle systems with current embedded sequential processors, and
“reasonable” software

Some effort may be required to obtain tight WCET estimates

No good solution for current multi-cores

Hot research topic how to handle parallel hardware and software

WCET Tutorial 2020-11-18 24

