Second Order Geometric Distance Fields

Anna Lili Horváth

Eötvös Loránd University

Róbert Bán, Gábor Valasek

CGTA 2023

Distance fields

- Evaluating the SDF can be difficult
- More efficient way: discretize the data
- Resolution and bounding box
- Zero order field

2

Sampled fields

- Combination of samples and filtering
- The field is **not C¹**
- We need an approriate filtering method
- The field consists of the **stored data** and a filtering method

Geometric distance field

- Store a proxy geometry
- For every cell:
 - Get the closest point on the surface (footpoint)
 - Fit a geometry that approximates the surface around the footpoint

Expectations

- The proxy geometry has to reconstruct the local differential geometry up to a given order
 - Order 1: footpoint and normal
 - Order 2: footpoint, normal and curvatures
- The SDF of the geometric invariant has to be easily computed

Overview

1. Geometric fields in 2D

- Generating fields
- New filtering method

2. Geometric fields in 3D

- Generating and filtering the Order 1 field
- Order 2 field
 - Proxy geometry
 - Generating the field
 - Filtering

Footpoint

Can be computed with the gradient of the SDF

$$\boldsymbol{f}\boldsymbol{p}(\boldsymbol{p}) = \boldsymbol{p} - f(\boldsymbol{p}) \cdot \nabla f$$
 where $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \end{bmatrix}$

Derivatives

For analytic input the footpoint and derivatives can be computed from the SDF

$$\partial_i d = \partial_i \|x - p\| = \frac{x_i - pi}{\|x - p\|}$$
$$\partial_{ij} d = \partial_{ij} \|x - p\| = \frac{-1}{\|x - p\|} \partial_j p_i - \frac{(x_i - pi)(xj - pj)}{\|x - p\|^3}$$

Source: Xinghua Song, Bert Jüttler, Adrien Poteaux. Hierarchical Spline Approximation of the Signed Distance Function

Geometric fields on the plane

• The order 1 field stores the **tangent** at the footpoint

$$d_{line} = \langle x - p, n \rangle$$

• The order 2 field stores the **osculating circle**

Bilinear filtering

• Calculate the distances from the geometry in the 4 nearest texels, and interpolating the result

Issues with standard filtering

- Hardware accelerated bi/trilinear filtering is not accurate
- Using higher order data problem with derivatives
- Algebraic fields: higher order interpolation (eg. Hermite)
- Geometric
 - Blending function
 - Local CSG

CSG filtering

- Let's take advantage of the fact that we are storing geometries
- Bilding a CSG (constructive solid geometry) tree from the stored halfplanes

Intersection or union

Building the CSG tree

15

Results

G0, bilinear G1, no filtering G1, bilinear G1, CSG filtering

Distance fields in 3D

Order 1 field

- The geometric invariant is the **tangent plane** at the footpoint
- Defined by the footpoint and normal

$$d_{plane} = \langle x - p, n \rangle$$

Order 2 field

• Footpoint, normal, principal curvatures and directions

Why the torus?

• Can repressent computation it primiplal to mail ares

Source: David Eberly. Fitting 3D Data with a Torus

A better representation

The footpoint representation

- Works for plane and infinite cylinder
- The previous formula can be used for the SDF
- The radius and the center can be computed from the principal curvatures

Fitting the torus

3. computing the principal curvatures with the Weingarten matrix

1. Surface points

- Finer grid around the footpoint
- Find the **closest points** of the surface to the points of the fine grid

Orthogonal projection

 Instead of using footpoints project the points of of the fine grid orthogonally on the surface

Projection vs Footpoints

- Bad approximation
- Difficult paralellization

Footpoints

Orthogonal projection

2. Degree 3 algebraic surface $f(x_i, y_i) = \begin{bmatrix} \frac{x_i^2}{2} & x_i y_i & \frac{y_i^2}{2} & x_i^3 & x_i^2 y_i & x_i y_i^2 & y_i^3 \end{bmatrix} \boldsymbol{b} = z_i$ $\boldsymbol{b} = \begin{bmatrix} A & B & C & D & E & F & G \end{bmatrix}^T$

3. Curvatures

Weingarten matrix

Eigenvalues are the principal curvatures

 $W = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$

• Eigenvectors are the principal directions

The axis of the torus should be the direction of the bigger principal curvature

Field evaluation – Order 1

Field evaluation – Order 2

Problem: The geometry reconstructed from the data is not always the proxy of the surface

Solution

$$d = \max(d_{torus}, d_{sphere})$$

$$d = \max(-d_{torus}, d_{sphere})$$

Trilinear filtering

Results

32 x 32 x 32

G2 100 x 100 x 100

CSG 3D

- A square, where the vertexes represent the 8 closest geometries
- Operations on the edges
- Over 30 different cases Work in progress
- Optimistic method

Summary

Geometric fields 1.

- Generating
- Filtering with bi/trilinear method

2. CSG filtering

- G1 2D field
- 3. Work in progress: CSG filtering in 3D

Thank you for the attention!

Sources

- Róbert Bán és Gábor Valasek. "Geometric Distance Fields of Plane Curves". Acta Cybernetica 25.2 (2021), 187–203. old. DOI: 10.14232/actacyb.289248. URL: <u>https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4192</u>.
- Vas Lia. Surfaces. Accessed: 2023-05-13. URL: <u>https://liavas.net/courses/math430/files/Surfaces_part3.pdf</u>.
- David Eberly. Fitting 3D Data with a Torus. Accessed: 2023-05-13. URL: https://www.geometrictools.com/Documentation/TorusFitting.pdf.
- Jack Goldfeather és Victoria Interrante. "A Novel Cubic-Order Algorithm for Approximating Principal Direction Vectors". ACM Trans. Graph. 23.1 (2004), 45–63. ISSN: 0730-0301. DOI: 10.1145/966131.966134. URL: https://doi.org/10.1145/966131.966134.
- Nelson Max. "Improved accuracy when building an orthonormal basis". Journal of Computer Graphics Techniques (JCGT) 6.1 (2017), 9–16. old. ISSN: 2331-7418. URL: <u>http://jcgt.org/published/0006/01/02/</u>.
- John C. Hart. "Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces". The Visual Computer 12.10 (1996), 527–545. old. ISSN: 1432-2315. URL: https://doi.org/10.1007/s003710050084.
- Róbert Bán és Gábor Valasek. "Higher Order Algebraic Signed Distance Fields". Computer-Aided Design and Applications 20.5 (2023), 1005–1028. old. URL: <u>https://cad-journal.net/files/vol_20/CAD_20(5)_2023_1005 1028.pdf.</u>
- D. P. Hardin, T. J. Michaels és E. B. Saff. A Comparison of Popular Point Configurations on S 2 . 2016. arXiv: 1607.04590 [math.NA].
- Inigo Quilez. 2D distance functions. Accessed: 2023-05-15. URL: <u>https://iquilezles.org/articles/distfunctions2d/.</u>