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Model driven machine learning and some applications
Variable Projection Operators

Adaptive signal models
Variable subspaces in Hilbert spaces

Let (H, ⟨·, ·⟩) be a Hilbert space and f ∈ H arbitrary.

Suppose φη
k ∈ H is a complete and orthogonal basis

(k ∈ N).

η ∈ Γ ⊂ RL (L ∈ N) determines the system φη
k .

For m ∈ N, φη
0 , . . . , φη

m−1 span the m-dimensional closed
subspace U ⊂ H.

For a fixed η, ∃!f̂ = ∑m−1
k=0 ckφη

k ∈ U for which ∥f̂ − f ∥ is
minimal and

⟨f − f̂ , g⟩ = 0 (∀g ∈ U).



Model driven machine learning and some applications
Variable Projection Operators

Adaptive signal models
Problem statement for applications

Applications: L2(R), H2(D), etc.

Some apriori information about f is usually known.

Suppose m << n. We want to find a good approximation

fi = f (ti) ≈
m−1∑
k=0

ckφη
k (ti) = (Φ(η)c)i

(i = 1, . . . , n, f ∈ L2(R))

Questions

1 How to choose the basis φη
k ?

2 How to determine the optimal η?
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Variable Projection Operators

Adaptive signal models
A nonlinear optimization problem
We look for the optimal parameter vector η ∈ Γ ⊂ RL, for which

r2(η) = ∥f − Φ(η)Φ+(η)f∥2
2 = ∥f − PΦ(η)f∥2

2.

so-called variable projection functional is minimal.
Properties of variable projection operators

PΦ(η)f is the orthogonal projection of f onto the column
space of Φ(η).
The gradient of r2(η) can be analytically calculated.1

Minimizing r2 w.r.t. η is known as a separable nonlinear
least squares (SNLLS) problem.

1G., Golub, V., Pereyra. "The differentiation of pseudo-inverses and nonlinear least squares problems whose
variables separate." SIAM Journal on numerical analysis (1973)
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Variable Projection Operators

Adaptive signal models
Signal representation

Let

η∗ = arg min
η∈RL

r2(η) = arg min
η∈RL

∥f − Φ(η)Φ+(η)f∥2
2.

Depending on the application we can represent f by

1 f → η∗ ∈ RL (analysis)

2 f → c = Φ+(η∗)f ∈ Rm (dimension reduction).

3 f → Φ(η∗)Φ+(η∗)f ∈ Rn (low pass filtering).

4 f → f − Φ(η∗)Φ+(η∗)f ∈ Rn (high pass filtering).
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An example in system identification

System identification
Discrete time SISO-LTI systems

x = h ∗ u Z7−→ X (z) = H(z)U(z),

where

u, x input and output sequences,

h impulse response,

X , Y , H are the Z-transforms of x, y , h.
Suppose system is causal and BIBO stable
=⇒ H ∈ H∞(D) ⊂ H2(D).

Identification task: Find the (inverse) poles/zeros of
the transfer function H(z) in D.
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An example in system identification

System identification
MT functions

Approximate H ∈ H2(D) by a complete and orthogonal basis
φη

k (k = 0, . . . , m).
Idea: choose Malmquist-Takenaka (MT) functions as the
basis functions:

φη
k (z) = Rak

k−1∏
j=0

Baj (z) =

√
1 − |ak |2

1 − akz

k−1∏
j=0

z − aj
1 − ājz

,

where η := (a0, . . . , am−1) ∈ Dm.
The functions φη

k have poles at 1/āj (j ≤ k, a ∈ D).
MT systems are complete and orthonormal in H2(D),
provided η satisfiers the Szász condition.
Choosing η = (0, 0, 0, ...) we get the trigonometric system.
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An example in system identification

System identification
SNLLS formulation

The frequency response H
∣∣
T ∈ H2(T) ⊂ L2(T).

Denote by h ∈ Cn (n ∈ N) a discrete sampling of H
∣∣
T.

SNLLS formulation:
r2(η) = ∥ℜh − Φ(η)Φ+(η)ℜh∥2

2,

where η = (r0, µ0 . . . , rm−1, µm−1) ⊂ R2m, where ak = rkeiµk

and the columns of Φ(η) contain real MT-functions1 sampled
on T.
It suffices to approximate the real part of h (see e.g.
Titschmarsh theorem).

1F. Schipp, "Racionális ortogonális rendszerek a jel- és
képfeldolgozásban", ELTE-IK Jegyzettár (2016)
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An example in system identification

System identification

(a) Random η inverse poles. (b) Optimal η∗ parameters.

Figure: A numerical example from1.

1T. Dózsa, M. Szabari, A. Soumelidis, P. Kovács, "Pole identification using discrete Laguerre expansion and
variable projection", In. Proc. The 22nd World Congress of the International Federation of Automatic Control
(IFAC2023), (2023)
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Data driven modeling

Supervised learning
Problem formulation

Approximate G : X → Y, where Y is a topological space.
Common domains for G : X ⊂ Rn or X ⊂ Rn×s (n, s ∈ N).
Common ranges for G :

Y ⊂ {1, 2 . . . n} (n ∈ N) (classification, i.e. |Y| = 2
binary classification).
Y ⊂ Rn (n ∈ N) (Regression).

Models
Identify Gθ ≈ G , where θ is a vector of parameters (usually
θ ∈ RP , or θ ∈ CP , P ∈ N).
Goal: find θ so that E : Y × Y → [0, ∞)

E (G(f ), Gθ(f )) f ∈ X

is minimized for all f ∈ X .
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Data driven modeling

Model training and evaluation
Training and test sets

Suppose that the values
G(f1), G(f2), . . . , G(fq) (fk ∈ T ⊂ X , k = 1, . . . , q) are
known.
Training and test sets: Ttr ∪ Tte = T , Ttr ∩ Tte = ∅.

Model training and evaluation

Training: solve
min
θ∈RP

E (Gθ(f ), G(f )), (∀f ∈ Ttr )

Denote by θ∗ a solution.
Testing: evaluate 1

|Tte |
∑

f ∈Tte

E (Gθ∗(f ), G(f )).
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Data driven modeling

Classical supervised learning framework
Supervised learning steps

1 Identify T ⊂ X and G(f ) (f ∈ T ). Measurements, expert
input, data augmentation etc.

2 Feature extraction:
Classical approach: transform the dataset T before
training. (e.g. PCA, time frequency representations, etc.)
Feature extraction transformations are incorporated
into the model Gθ (e.g. convolutional neural
networks).

3 Choose model architecture Gθ. (e.g. SVM, Neural
Networks, etc.).

4 Train model on (possibly transformed) data from Ttr and
evaluate on Tte.
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Data driven modeling

Open questions
Common issues

Enough data? Labelled correctly?

Loss function represents task to solve?

Was the model architecture chosen correctly?

Can extracted features be interpreted?

Can we trust the trained model’s predictions?

Model driven ML

Incorporate domain knowledge into supervised learning
schemes through the use of interpretable mathematical
models.
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VP-NET: Model driven Deep Learning

VP-NET
Variable Projection (VP) layers

Suppose that for f ∈ Rn

f k = f (tk) (f ∈ L2(R)).
Then, the mappings

1 Gη(f ) = c = Φ+(η)f ∈ Rm,

2 Gη(f ) = Φ(η)Φ+(η)f ∈ Rn,

3 Gη(f ) = f − Φ(η)Φ+(η)f ∈ Rn,

where η ∈ RP and the columns Φ(η) ∈ Rn×m contain
samplings of an orthogonal basis in L2(R) are called
variable projection (VP) layers.
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VP-NET: Model driven Deep Learning

VP-NET
Properties of VP layers

The gradients ∂Gη

∂η
can be analytically calculated provided

∂Φ(η)
∂η

is known.1

Gη can implemented as a layer in a neural network.

If the basis functions in the columns of Φ(η) are chosen
correctly, the parameters η can have physical meanings.2

Usually η contains less parameters than equivalent
convolution layer.

1G., Golub, V., Pereyra. "The differentiation of pseudo-inverses and nonlinear least squares problems whose
variables separate." SIAM Journal on numerical analysis (1973)

2P. Kovács, G. Bognár, C. Huber, and M. Huemer. "VPNET: Variable projection networks." International
Journal of Neural Systems (2022)
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VP-NET: Model driven Deep Learning

VP-NET
Usual VP-NET architecture

First layers are VP-layers: these learn an appropriate
representation of the data.
Lower layers are fully connected: these solve the
classification/regression task.

Input Hidden layers
Output layer

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

…

VP layer(s)
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Road abnormality recognition with VP-NET

Tire sensor signal processing
Problem description

Sensor: tire implanted 3D force sensors.
Signals: changes in resistance due to mechanical forces.
Task: surface abnormality detection.

Collaboration
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Road abnormality recognition with VP-NET

Tire sensor signal processing

Signal properties

Quasi periodic, quasi compactly supported.

Width of support changes with vehicle speed.

Tire revolutions occurring on abnormal surface lower
SNR.

IDEA: construct VP-layer using variable projection and
adaptive Hermite functions. Adaptive high pass filtering.
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Road abnormality recognition with VP-NET

Tire sensor signal processing
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Figure: LEFT: test vehicle and readout electronics RIGHT: signal
morphologies at different velocities.
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Road abnormality recognition with VP-NET

Tire sensor signal processing

Figure: TOP: a tire revolution on normal surface. BOTTOM: a
tire revolution on abnormal surface.
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Road abnormality recognition with VP-NET

Tire sensor signal processing
Adaptive Hermite functions

Classical Hermite polynomials: {hk | k ∈ N}.
Hermite functions:

φk(t) = hk(t)
/

||hk ||2 ·
√

w(t) (k ∈ N),

where w(t) = e−t2 .
Adaptive Hermite functions:1

φ
(τ,λ)
k (t) :=

√
λφk(λ(t − τ)) (t, τ ∈ R, λ > 0).

VP-layer: G(τ,λ)(f ) := f − Φ(τ, λ)Φ+(τ, λ)f
1T. Dózsa and P. Kovács, “ECG Signal Compression Using Adaptive Hermite Functions,” ADVANCES IN

INTELLIGENT SYSTEMS AND COMPUTING, vol. 399, pp. 245–254, 2015.



Model driven machine learning and some applications
Road abnormality recognition with VP-NET

Tire sensor signal processing

Figure: Adaptive Hermite approximations of tire signals



Model driven machine learning and some applications
Road abnormality recognition with VP-NET

Tire sensor signal processing

Figure: Proposed VP-NET architecture for road surface
abnormality recognition
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Road abnormality recognition with VP-NET

Tire sensor signal processing
Results

Sensor: Nanosensors Laboratory, MFA
Test vehicle: Nissan Leaf, SZTAKI-SCL
Data: 282 normal and 235 abnormal tire revolutions.

Algorithm Accuracy (on the test set)
SVM 94.23%
CNN 97.12%
FCNN 97.11%

VPNet (proposed) 98.08%

Table: Road surface abnormality recognition1

1T. Dózsa et. al., "Road Abnormality Detection Using Piezoresistive Force Sensors and Adaptive Signal
Models," in IEEE Transactions on Instrumentation and Measurement, (2022)
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Variable Projection Support Vector Machines

Current research directions
Theoretical considerations

Variable projection operators for other ML models (e.g.
SVM1 2 and spiking networks3).
Interpretable transformations using other new frameworks
(e.g. hyperbolic convolution operators).

Applications

Real-time road surface abnormality recognition.
Wheel force estimation based on tire sensor signals.

1T. Dózsa and P. Kovács, Variable projection support vector machines, Proc. 4th International Conference on
Advances in Signal Processing and Artificial In- telligence (ASPAI), (2022)

2T. Dózsa F. Deuschle, B. Cornelis, P. Kovács, "Variable projection support vector machines and some
applications using adaptive Hermite expansions", International Journal of Neural Systems (2023) (Under review)

3P. Kovács, and K. Samiee. "Arrhythmia Detection Using Spiking Variable Projection Neural Networks."
Computing in Cardiology (CinC) (2022)



Model driven machine learning and some applications
Variable Projection Support Vector Machines

VP-SVM
Support vector classification

Suppose G : Rn ⊃ X → Y := {−1, 1}.
A Support Vector Machine (SVM) aims to identify an optimal
hyperplane separating the examples in X .
Gθ(f ) := sgn(wT f + b) (θ := [w , b] ∈ Rn+1, f ∈ X ⊂ Rn).
Training (soft-margin SVC):

min
w∈Rn,b∈R

1
2∥w∥2 +

q∑
j=1

ξj ,

subject to yk(wT xk + b) ≥ 1 − ξk ,

ξk ≥ 0 (k = 1, . . . , q).

Convex optimization can be used to solve for w and b.
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Variable Projection Support Vector Machines

VP-SVM
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Variable Projection Support Vector Machines

VP-SVM
Unconstrained formulation

Unconstrained SVM training formulation for a linearly
separable X :

min
w∈Rn,b∈R

C ·
q∑

i=1
max(0, 1−yi(wT f i +b))+∥w∥2

2, (C ∈ R).

Can solve for w and b using (sub)gradient methods.

Other efficient optimization algorithms exist.1
1J. Shawe-Taylor, and S. Shiliang. "A review of optimization

methodologies in support vector machines." Neurocomputing 74.17
(2011)
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Variable Projection Support Vector Machines

VP-SVM
Variable Projection Support Vector Machines

Suppose
Gθ(f ) := sgn(wT (Φ(η)+f ) + b)

(θ := {w , η, b}, w ∈ Rm, η ∈ RP , b ∈ R).

VP-SVM training objective:

C
q∑

i=1
max(0, 1 − yi(wT (Φ+(η)f i) + b)+

∥w∥2
2 + R(η),

where w ∈ Rn and R(η) is an added regulatory term:

R(η) = α

q

q∑
i=1

∥f i − Φ(η)Φ(η)+f i∥2
2

∥f i∥2
2

(α ∈ R).
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Variable Projection Support Vector Machines

VP-SVM
VP-SVM properties

(Sub)gradient based methods can be used for training.

R(η) prevents the problem of vanishing gradients.

More suitable for light-weight applications (less
parameters than VP-NET).

Can be used with Mercer kernels as well.1 2

1T. Dózsa and P. Kovács, Variable projection support vector machines, Proc. 4th International Conference on
Advances in Signal Processing and Artificial In- telligence (ASPAI), (2022)

2T. Dózsa F. Deuschle, B. Cornelis, P. Kovács, "Variable projection support vector machines and some
applications using adaptive Hermite expansions", International Journal of Neural Systems (2023) (Accepted)
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Variable Projection Support Vector Machines

Sensor fault detection
Problem description

GOAL: identify peaks in accelerometer measurements
appearing due to hardware failure.

Sudden peaks can appear due to so-called shock events.
These have similar morphology to sensor peaks.

Peaks due to sensor failure and physical phenomena may
overlap.

Collaboration
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Variable Projection Support Vector Machines

Sensor fault detection
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Figure: Accelerometer data to be classified
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Variable Projection Support Vector Machines

Sensor fault detection
Classification with VP-SVM

Difficulties and observations:
Normal/abnormal examples have similar morphology.
Highly unbalanced dataset.
Examples have compact support, can be modelled
efficiently with adaptive Hermite functions.

Methodology and preprocessing
Transform measurement by truncated scalogram using
complex Morlet wavelets.
Downsample normal examples: small training set, large
test set.
Use VP-SVM with Gaussian kernel and adaptive Hermite
functions.
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Variable Projection Support Vector Machines

Sensor fault detection
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Figure: Peaks due to sensor failure can appear near vibration
induced peaks
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Variable Projection Support Vector Machines

Sensor fault detection

Figure: Preprocessing steps before classification with VP-SVM
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Variable Projection Support Vector Machines

Sensor fault detection
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Conclusion
Summary

Discussed variable projections in Hilbert spaces.

Extension of neural networks with variable projection
layers for interpretable feature extraction.

Generalization of framework to other ML algorithms (e.g.
SVM)

Example applications:
Road abnormality detection using tire sensor signals.

Sensor fault detection in accelerometer measurements.



Model driven machine learning and some applications
Conclusion

Conclusion

Thank you for your attention
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