
Traits and lifetimes in 
Rust

Cseh Viktor – Bolyai presentation



Rust primer
• C-like language
• Has similar structs, operators, datastructures, etc.
• Bundled build system called `cargo`
• Extensive type-safe macro system



Enums in Rust
• Corresponds to std::variant in C++
• Pattern matching is a first-class citizen
• For “non-null” types, the compiler will optimize the layout



Traits in Rust
• No inheritance between structs in Rust
• Interfaces, called `trait`s
• New traits can be implemented for existing objects
• It can contain functions, associated types, and constants



Traits and inheritance
• Supertraits – one trait must implement another
• Auto traits – implemented on all objects by default, “markers”
• Traits cannot have conflicting implementations
• No “overload resolution” in Rust



References and lifetimes
• Any object in Rust can have a reference to it
• In C++ references are just non-null const pointers
• In Rust, references have lifetime information
• Mutable reference cannot exist when there are immutable references

• Pointers do not have lifetime guarantees, dereferencing is unsafe



Lifetime analysis
• Lifetimes are checked statically at compile-time
• “borrowck”: All references live until the end of the scope
• Introduces “useless” scopes

• “Non-lexical lifetimes”: References can end before a scope
• Flow-insensitive – rejects control-flow-dependent correct programs

• “Polonius”: Future lifetime checker using data-flow analysis
• Will be flow-sensitive



Lifetime relations
• “Outlives” relation between lifetimes
• A reference must outlive the container it’s stored in
• Generic parameter to the struct
• Same generic parameters can be applied to traits as well

• This makes linked lists difficult to implement
• Each node must outlive the nodes it refers to

• Self-referential structs cannot be implemented
• Polonius will enable this



Moving objects in Rust
• In C++, move semantics guarantee that an object stays in place if 

required
• In Rust, core assumption is that all objects can be moved freely
• In some cases, that is unwanted behavior – Pin<T>

• Clones are explicit, but “Copy”-able types are rare


	Traits and lifetimes in Rust
	Rust primer
	Enums in Rust
	Traits in Rust
	Traits and inheritance
	References and lifetimes
	Lifetime analysis
	Lifetime relations
	Moving objects in Rust

