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Rust primer
• C-like language
• Has similar structs, operators, datastructures, etc.
• Bundled build system called `cargo`
• Extensive type-safe macro system



Enums in Rust
• Corresponds to std::variant in C++
• Pattern matching is a first-class citizen
• For “non-null” types, the compiler will optimize the layout



Traits in Rust
• No inheritance between structs in Rust
• Interfaces, called `trait`s
• New traits can be implemented for existing objects
• It can contain functions, associated types, and constants



Traits and inheritance
• Supertraits – one trait must implement another
• Auto traits – implemented on all objects by default, “markers”
• Traits cannot have conflicting implementations
• No “overload resolution” in Rust



References and lifetimes
• Any object in Rust can have a reference to it
• In C++ references are just non-null const pointers
• In Rust, references have lifetime information
• Mutable reference cannot exist when there are immutable references

• Pointers do not have lifetime guarantees, dereferencing is unsafe



Lifetime analysis
• Lifetimes are checked statically at compile-time
• “borrowck”: All references live until the end of the scope
• Introduces “useless” scopes

• “Non-lexical lifetimes”: References can end before a scope
• Flow-insensitive – rejects control-flow-dependent correct programs

• “Polonius”: Future lifetime checker using data-flow analysis
• Will be flow-sensitive



Lifetime relations
• “Outlives” relation between lifetimes
• A reference must outlive the container it’s stored in
• Generic parameter to the struct
• Same generic parameters can be applied to traits as well

• This makes linked lists difficult to implement
• Each node must outlive the nodes it refers to

• Self-referential structs cannot be implemented
• Polonius will enable this



Moving objects in Rust
• In C++, move semantics guarantee that an object stays in place if 

required
• In Rust, core assumption is that all objects can be moved freely
• In some cases, that is unwanted behavior – Pin<T>

• Clones are explicit, but “Copy”-able types are rare
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