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Static Analysis is hard…

● Static analysis is a great tool for early feedback on software quality
● Detecting complex, deep-rooted problems requires complex analysis

void isThisCorrect() {
  *NULL = 5;
  10 / 0;
  int *notMyProblem = malloc(4);
}

int handle(struct A *a) {
  struct Obj o = conjure(a);
  int i = extract(o);
  return 10 / i;
}



…great bug report generation is harder!

● Simple analyses require simple bug reporting techniques
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How do we measure this stuff?

Good stuff mate BLOODY AWFUL!



How do we measure this stuff?

● Whether something is explained well is inherently subjective
● We have great intuition on what’s good
● Intuition is hard to define in concrete terms



Agenda

● Symbolic execution and the Clang Static Analyzer
○ How the analysis works
○ How bug report generation works

● Problem examples
● Previous (failed) survey
● Manual survey
● Latest survey



Symbolic execution and the Clang Static Analyzer



The Clang Static Analyzer

● Arguably the most popular and powerful C++ compiler today
● Part of LLVM
● The Clang Static Analyzer of a component of Clang
● Based on symbolic execution



Symbolic execution

● Traverse the control flow graph (CFG) of a function
● Explored multiple path of execution
● On branches, explore a path on which the condition is true, and one on which 

its false
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  if (i < 0)
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  if (i > 0)
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  10 / i;
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Report generation
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Problem example 1









Problem example 2
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Bug reports have much to improve on

● Static analyzers are invaluable for detecting bugs early
● Experts need to evaluate the results manually
● Trust in the tool drops if the reports are poor



…but what to improve on?

● Whether a bug report is good is inherently subjective.
● We need a mathematical model to measure bug report quality on
● That should be based on empirical data



Previous (failed) survey



Addition of Control Dependency Analysis

● CSA used to explain data dependency well
● Lack of understanding for control dependency
● Contribution as a part of GSoC’19







Survey

● 11 participants of the CodeChecker team
● Real bug reports on large, open source software
● Required domain specific knowledge
● No statistically relevant results



Manual survey



Measurement methodology

● Analyses on large, open source C/C++ projects
● Only results by core.DivByZero
● Manual inspection of all reports, up to 30 minutes on each



Categorization

● Acceptable: It is possible to understand the report, and whether it stands, 
even if it could be improved.

● Not enough info: It is not possible understand the report, but it is possible to 
say which function calls / value changes the analyzer neglected to explain, 
and a domain expert may possess the missing information and judge whether 
the report stands.

● Incomprehensible: The entire bug report is incomprehensible, and its doubtful 
that even a domain expert can judge the report.





Acceptable (LLVM)
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Not enough info

????????



Incomprehensible (QTBase)



Latest survey



Measurement methodology

● 10 participants from the CodeChecker team
● 7 different bugs on synthetized examples
● For each bug, we generated 2-3 bug reports

○ Default
○ Verbose
○ “Ideal”

● Much less time spent untangling the source code
● Each note of the bug report needed to be ranked on a 1-5 scale

















Conclusion

● Complex bugs -> complex analyses
● Complex analyses -> complex bug report generation
● Bug reports are the main interface in between the user and the analyzer
● In order to measurably improve bug reports, we need to measure quality
● 3 surveys:

○ Human experiments won’t work unless the survey is very well thought out
○ Manual inspection can be a good basis for creating a well thought out survey
○ Make simple, targeted questions, ask for simple responses


