
Improving the Quality of Static
Analysis Bug Reports

Kristóf Umann <szelethus@inf.elte.hu>
Zoltán Porkoláb <gsd@inf.elte.hu>

Eötvös Loránd University, Faculty of Informatics, Department of Compilers

Bolyai Collage, 2024. March. 20., Budapest, Hungary

mailto:gsd@inf.elte.hu

Static Analysis is hard…

● Static analysis is a great tool for early feedback on software quality
● Detecting complex, deep-rooted problems requires complex analysis

void isThisCorrect() {
 *NULL = 5;
 10 / 0;
 int *notMyProblem = malloc(4);
}

int handle(struct A *a) {
 struct Obj o = conjure(a);
 int i = extract(o);
 return 10 / i;
}

…great bug report generation is harder!

● Simple analyses require simple bug reporting techniques

…great bug report generation is harder!

● Complex analyses require complex bug reporting techniques

…great bug report generation is harder!

● Complex analyses require complex bug reporting techniques

…great bug report generation is harder!

● Complex analyses require complex bug reporting techniques

…great bug report generation is harder!

● Complex analyses require complex bug reporting techniques

…great bug report generation is harder!

● Complex analyses require complex bug reporting techniques

…great bug report generation is harder!

● Complex analyses require complex bug reporting techniques

…great bug report generation is harder!

● Complex analyses require complex bug reporting techniques

…great bug report generation is harder!

● Complex analyses require complex bug reporting techniques

How do we measure this stuff?

Good stuff mate BLOODY AWFUL!

How do we measure this stuff?

● Whether something is explained well is inherently subjective
● We have great intuition on what’s good
● Intuition is hard to define in concrete terms

Agenda

● Symbolic execution and the Clang Static Analyzer
○ How the analysis works
○ How bug report generation works

● Problem examples
● Previous (failed) survey
● Manual survey
● Latest survey

Symbolic execution and the Clang Static Analyzer

The Clang Static Analyzer

● Arguably the most popular and powerful C++ compiler today
● Part of LLVM
● The Clang Static Analyzer of a component of Clang
● Based on symbolic execution

Symbolic execution

● Traverse the control flow graph (CFG) of a function
● Explored multiple path of execution
● On branches, explore a path on which the condition is true, and one on which

its false

void a(int i) {
 if (i < 0)
 return;
 if (i > 0)
 return;
 10 / i;
}

void a(int i) {
 if (i < 0)
 return;
 if (i > 0)
 return;
 10 / i;
}

BEGIN

if (i < 0)

10 / i

if (i > 0)

END

Control Flow Graphs

BEGIN

if (i < 0)

10 / i

if (i > 0)

END

Exploded Graphs

BEGIN

BEGIN

if (i < 0)

10 / i

if (i > 0)

END

Exploded Graphs

BEGIN

if (i < 0) i ∈ (-∞, +∞)

BEGIN

if (i < 0)

10 / i

if (i > 0)

END

Exploded Graphs

BEGIN

if (i < 0)

END

i ∈ (-∞, 0)

BEGIN

if (i < 0)

10 / i

if (i > 0)

END

Exploded Graphs

BEGIN

if (i < 0)

if (i > 0) ENDi ∈ [0, +∞)

BEGIN

if (i < 0)

10 / i

if (i > 0)

END

Exploded Graphs

BEGIN

if (i < 0)

if (i > 0) END

ENDi ∈ (0, +∞)

BEGIN

if (i < 0)

10 / i

if (i > 0)

END

Exploded Graphs

BEGIN

if (i < 0)

10 / i

if (i > 0) END

ENDi == 0

Report generation

BEGIN

if (i < 0)

10 / i

if (i > 0) END

END

BEGIN

if (i < 0)

10 / i

if (i > 0)

Report generation

BEGIN

if (i < 0)

10 / i

if (i > 0)

Assuming ‘i’ is >= 0

Assuming ‘i’ is <= 0

Division by zero

Report generation

Assuming ‘i’ is >= 0

Assuming ‘i’ is <= 0

Division by zero

Problem example 1

Problem example 2

????????

Bug reports have much to improve on

● Static analyzers are invaluable for detecting bugs early
● Experts need to evaluate the results manually
● Trust in the tool drops if the reports are poor

…but what to improve on?

● Whether a bug report is good is inherently subjective.
● We need a mathematical model to measure bug report quality on
● That should be based on empirical data

Previous (failed) survey

Addition of Control Dependency Analysis

● CSA used to explain data dependency well
● Lack of understanding for control dependency
● Contribution as a part of GSoC’19

Survey

● 11 participants of the CodeChecker team
● Real bug reports on large, open source software
● Required domain specific knowledge
● No statistically relevant results

Manual survey

Measurement methodology

● Analyses on large, open source C/C++ projects
● Only results by core.DivByZero
● Manual inspection of all reports, up to 30 minutes on each

Categorization

● Acceptable: It is possible to understand the report, and whether it stands,
even if it could be improved.

● Not enough info: It is not possible understand the report, but it is possible to
say which function calls / value changes the analyzer neglected to explain,
and a domain expert may possess the missing information and judge whether
the report stands.

● Incomprehensible: The entire bug report is incomprehensible, and its doubtful
that even a domain expert can judge the report.

Acceptable (LLVM)

Not enough info (ffmpeg)

Not enough info

Not enough info

Not enough info

Not enough info

Not enough info

Not enough info

Not enough info

????????

Incomprehensible (QTBase)

Latest survey

Measurement methodology

● 10 participants from the CodeChecker team
● 7 different bugs on synthetized examples
● For each bug, we generated 2-3 bug reports

○ Default
○ Verbose
○ “Ideal”

● Much less time spent untangling the source code
● Each note of the bug report needed to be ranked on a 1-5 scale

Conclusion

● Complex bugs -> complex analyses
● Complex analyses -> complex bug report generation
● Bug reports are the main interface in between the user and the analyzer
● In order to measurably improve bug reports, we need to measure quality
● 3 surveys:

○ Human experiments won’t work unless the survey is very well thought out
○ Manual inspection can be a good basis for creating a well thought out survey
○ Make simple, targeted questions, ask for simple responses

