
CMake & Ninja
by István Papp

istvan.papp@ericsson.com

mailto:istvan.papp@ericsson.com

Hello & Disclaimer

 I don’t know everything (surprise!), if I stare blankly after a question,

go to https://cmake.org/

 Spoiler alert: or https://ninja-build.org/

https://cmake.org/
https://ninja-build.org/

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

Definitions

 A practical view from my perspective, some of these are debatable

 Send me feedback, so 2.0 will be better

What is the goal of a build system?

 Get from source* to binary*

 *Source: source code, text file, assets (textures, audio)

 *Binary: executable, zip file, text file

</>
110

011

Requirements

 Speed

 Reliability

 Flexibility

Requirements - Speed

 Fast feedback

 Catch errors ASAP

 Avoid breaking stuff for others

 Conserve resources

 No effect on the compiler*

 Avoid work

 Parallel execution

*Build step: zip, upload/download, compilation

Requirements - Reliability

 Umbrella term

 Deterministic

 Stable

 No unexpected behaviour

Requirements - Flexibility

 Large variety of tasks

 Easy to modify

 Easy to read

Sources of complexity

 Source code in multiple directories

 External libraries

 Targeting different platforms

 Compilers

 Operating systems

 Hardware

 Test code

 Mixing languages

Make

 Make is very generic

 Mostly conforms to the requirements

 Designed in 1977 (40 years old!)

 We can do better now

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

CMake

 “Cross-Platform Makefile Generator” (source: man cmake)

 Created by a company called Kitware about 17 years ago

 Gained popularity in the last 3-4 years

 Open source software, like most good development tools

 Popular = StackOverflow compatible

 Replaces configuration utilities like autotools

Capabilities – cross-platform

 Runs on Linux, Windows, Mac OSX

 Can compile for Linux, Windows, Mac OSX

 Executable/binary format

 Path separators

 Platform-dependent libraries

Capabilities – in-place & out-of-place

 In-place (in-tree): objects files and binaries mixed with source

 Easy to do

 Out-of-place (out-of-tree): build artifacts gathered in a dedicated
directory

 Easy to force a clean build

 Multiple builds in same repo

Capabilities

 Mostly C/C++, supports other languages

 Supports using multiple toolkits

 Supports static and dynamic library builds

 Uses build tools native to the environment

 Has a graphical interface

 Extendable via macros, functions and modules

Build process

1. Generate standard build files from platform independent

configuration files.

 CMakeLists.txt files in every directory.

2. Perform the actual build using native tools.

 Usually make, gcc, msvc++, whatever the platform has.

CMakeLists.txt Makefile Binary

cmake make + gcc

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

A simple example

<project_root>

|--build

|--inc

| `--<header files>

`--src

|--main.cc

`--CMakeLists.txt

A simple example

<project_root>/src/CMakeLists.txt:

Adding a library

<project_root>

|--build

|--inc

| `--<header files>

|--src

| |--main.cc

| `--CMakeLists.txt

`--graphics

|--inc

| `--<library header files>

|--src

| |--bells.cc

| |--whistes.cc

| `--CMakeLists.txt

`--CMakeLists.txt

Adding a library

<project_root>/src/CMakeLists.txt:

Adding a library

<project_root>/graphics/CMakeLists.txt:

Adding a library

<project_root>/graphics/src/CMakeLists.txt:

Using the example

cd <project_root>/build

cmake ../src && make

 Binaries by default go into the directory where you start cmake

 The argument is the directory where the starting CMakeLists.txt lives

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

Variables

Variables

Lists

Lists

Conditionals

Conditionals

Formatting

Other rules

Everything else

 Iteration: foreach(), while()

 Platform inspection: check_function_exists()

 Reuse: add_custom_command(), macro(), function()

 Extension: include() files from CMAKE_MODULE_PATH

Now you know how to read the documentation

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

CTest

Test driver for unit and component tests

1. Add enable_testing() to your listfile

2. Add testcases with add_test()

3. Run your tests with ctest

4. ???

5. Profit!

CPack

 Installation: install_*() commands

 Distribution: include(CPack), cpack_*() commands

 tar.gz, zip, deb, rpm, etc.

 cpack --config <your_config>.cmake

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

Ninja

Small build system with a focus on speed

 Generated input

 Still human-readable

 Prefer speed over convenience

 Do one thing, and do it well

How?

 Dependency of files as input

 No unnecessary decisions

 Compilers?

 Compiler flags?

 Debug or release?

 The bare minimum to describe dependency graphs

 Ninja doesn't know about your language

Features

 Multiplatform

 Very fast when there's nothing to do

 Think “incremental build”

 One environment variable: NINJA_STATUS

 Controls the output’s format

Some more nice features

 Outputs depend on the command line

 Changing the compilation flags will cause a rebuild

 Builds are parallel by default

 Need correct dependencies

 Run ninja with nice

 Command output is buffered

How to write your own build.ninja files

 Don't

build.ninja syntax

 variables (aliases for strings)

<variable> = <value>

 build statements (how to do things)

build <outputs>: <rulename> <inputs>

 rules (what things to do)

rule <rulename>

<variable> = <value>

<variable> = <value>

Example build.ninja

cflags = -Wall

rule cc

command = gcc $cflags -c $in -o $out

build foo.o: cc foo.c

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

Tying it all together

 CMake supports multiple generators

cmake –G “Unix Makefiles”

cmake –G “Ninja”

 Makefiles work well, but Ninja was designed for this

Summary

 Speed: handled by Ninja

 Flexibility: provided by CMake

 Reliability: both seem to be reliable so far

 Use CMake with Ninja

 Look for better alternatives for existing tools

Thanks for listening & Questions
Contact me at istvan.papp@ericsson.com

mailto:istvan.papp@ericsson.com

