CMake & Ninja

by Istvan Papp

istvan.papp@ericsson.com

mailto:istvan.papp@ericsson.com

Hello & Disclaimer

» | don't know everything (surprisel), if | stare blankly after a question,
go to https://cmake.org/

» Spoiler alert: or htfps://ninja-build.org/

https://cmake.org/
https://ninja-build.org/

Contents

» |nfroduction

» Definitions

Definifions

» A practical view from my perspective, some of these are debatable

» Send me feedback, so 2.0 will be better

What is the goal of a build system?e

» Gef from source* to binary*

®» *Source: source code, text file, assets (textures, audio)

» *Binary: executable, zip file, text file

110

§/> 011

Requirements

» Speed
» Reliability
» [lexibility

Requirements - Speed

» Fast feedback
» Catch errors ASAP
» Avoid breaking stuff for others

» Conserve resources

» No effect on the compiler*
= Avoid work

» Pqarallel execution

*Build step: zip, upload/download, compilation

Requirements - Reliabllity

» Umbrella term

®» Deterministic
= Stable
» No unexpected behaviour

Requirements - Flexibllity

® | arge variety of tasks
®» Fasy fo modify

®» Fqasy fo read

Sources of complexity

®» Source code in multiple directories
» External libraries

» Targeting different platforms

» Compilers

» Operating systems
» Hardware

» Test code
» Mixing languages

Make

» Make is very generic
®» Mostly conforms to the requirements

» Designedin 1977 (40 years old!)

» We can do befter now

Contents

» |nfroduction
» Definifions
» CMake

CMake

» “Cross-Platform Makefile Generator” (source: man cmake)
» Created by a company called Kitware about 17 years ago
» Gained popularity in the last 3-4 years

» Open source software, like most good development tools

» Popular = StackOverflow compatible

®» Replaces configuration utilities like autotools

Capabillities — cross-platform

» Runs on Linux, Windows, Mac OSX

» Can compile for Linux, Windows, Mac OSX

» Fxecutable/binary format

» Path separators

» Plafform-dependent libraries

Capabillities — in-place & out-of-place

® |n-place (in-tfree): objects files and binaries mixed with source

®» Fasy fo do

» Qut-of-place (out-of-tree): build artifacts gathered in a dedicated
directory

» Fqsy to force a clean build

= Mulfiple builds in same repo

Capabillities

» Mostly C/C++, supports other languages
» Supports using multiple toolkits

» Supports static and dynamic library builds
» Uses build tools native to the environment
®» Has a graphical interface

» Extfendable via macros, functions and modules

Build process

1. Generate standard build files from platform independent
configuration files.

» CMakelists.txt files in every directory.

2. Perform the actual build using native tools.

» Usually make, gcc, msvc++, whatever the platform has.

cmake make + gcc
—

CMakelists.txt Makefile Binary

Contents

» |nfroduction
» Definifions
» CMake

» Example

A simple example

<project_root>
--build
--inc

" --<header files>

T --Src
| --main.cc

" --CMakelLists.txt

A simple example

<project_root>/src/CMakelLists.txt:

cmake minimom required (VERSION 3.8)

project (BestProjectEver)

includa_ﬁirectnries(..finc]

-] M N W Ly Ry

add executable (BestProjectEver main.cc)

Adding a library

<project _root>

| --main.cc
" --CMakelLists.txt
--graphics
| --inc
" --<library header files>
--src

| --whistes.cc
" --CMakelLists.txt

|
|
| |--bells.cc
|
|
" --CMakelists.txt

Adding a library

<project_root>/src/CMakelLists.txt:

cmake minimmm reguired (VERSION 3.8)

2 project (BestProjectEver)

4 add_subdirectnry(..fgraphics]

S

B include directories(../inc)

7 includ:_ﬁirecturiesi..fgraphicsfinc]

add executable (BestProjectEver main.cc)

I
(e B T & R = |

target link libraries (BestProjectEver Graphics)

Adding a library

<project _root>/graphics/CMakelLists.txt:

add subdirectory(src)

thi=s file could be skipped by pointing right at
<project root>/graphics/src/CHMakelLists.txt in the

£ first file

(il IR S T TR N Oy

Adding a library

<project_root>/graphics/src/CMakelLists.txt:

include directories(../inc)

add library(Graphics bells.cc whistles.cc)
¥# the name will be l1libGraphics=.a or Graphics=.1lib,

% depending on the platform

(o (Y Y S TR Y &

Using the example

cd <project _root>/build

cmake ../src && make

» Binaries by default go into the directory where you start cmake

®» The argument is the directory where the starting CMakelLists.txt lives

Contents

Intfroduction

Definitions

CMake

Example

CMake as a language

Variables

set (FOD "kbar™)
zet (RESULT "Progress S{FO0}...")

et (SRC filel.cc fileZ2.cc file3.cc)
file (GLOB 5RC "*.cc")

-] @y LN B L RO

add executable (MyLittleProject :={3EC]

B

Variables

set (CHAFE CxXX STANDARD 11)

set (CHMAKE CXX FLAGS
"${CMAFKE CXX FLAGS} -std=c++1l1 -W -Wall -pedantic")

[T T L B =

Lists

set (FOO a b c)
set (FOO arb:;c)
get (FOO "a:b:c™)

% empty string, FALSE, NO, OFF, or any =string
ending in -NOTFOUND all evaluate to false

-1 T LN B L) R

Lists

set (FOO a b c)
list (APPEND FOO a b c)

li=t (LENGTH FOU result)
message (= {rezultl) # prints 3

(i T % Y =N TR % I =

Conditionals

set (CHARE CXX COMPILER "/usr/bin/g++")

2 project (MyLittleProject)

3

q

o Hif ("${CMAFKE CXX COMPILEE ID}" STREQUAL "GHU")

] set (WARNING FLAGS

T “E{WARHIHG_FLAGS} —-Wzomething-only-gcc—-knows")

8 Helseif ("§{CMAFE CXX COMPILER ID}" STREQUAL "Clang")

9 set (WARNING FLAGS
10 "$ {WARNING FLAGS} -Wsomething-only-clang-knows")
11 —endif ()
12 set (CMAKE CXX FLAGS "§{CMAFE CXX FLAGS} §{WARNING FLAGS}")

Conditionals

find package (Boost 1.53.0 REQUIRED COMPCONENTS filesystem regex)
if (Boo=st FOUND)

include directories(:{Coost INCLUDE DIED)
endif ()

[T Y = ' TR " B =

¥ looks for a FindBoost.cmake

Formatting

£ vou guessed right, these are comments

find package |
Boo=st
1.53.0
REQUIRED
CCHMPOHENTS
filesystem

-] M N oW L R

regex

(i B 1 B &

I 5

Other rules

MESSAGE (hi) # prints "hi"™
message (hi) # prints "hi"™ again
message (HI) # prints "HI®

math (EXPR x "3 + 2") # x will be &

-] O N B L R

¥ no declarations

wvariable=s are global from the current directory down

Everything else

» |[feration: foreach(), while()

» Plafform inspection: check_function_exists()

®» Reuse: add_custom_command(), macro(), function|)
» Extension: include() files from CMAKE_MODULE_PATH

Now you know how to read the documentation

Contents

» |nfroduction
» Definifions
CMake

» Example

CMake as a language

» Other command line tools

CTest

Test driver for unit and component tests

1. Add enable_testing() to your listfile
Add testcases with add_test()

Run your tests with ctest

Profif!

SNgs BY

CPack

» |nstallation: install_*() commands

» Distribution: include(CPack), cpack_*() commands

» far.gz, zip, deb, rom, etc.

®» cpack --config <your_config>.cmake

Contents

» |nfroduction

» Definitions

» CMake

» Example

» CMake as alanguage

» Other command line tools

= Ninja

Ninjo

Small build system with a focus on speed

» Generated input

= Still human-readable

» Prefer speed over convenience

= Do one thing, and do it well

Howe

» Dependency of files as input
®» NO unnecessary decisions
» Compilers?

» Compiler flags?

» Debug orrelease?
®» The bare minimum to describe dependency graphs

» Ninja doesn't know about your language

Features

» Mulfiplatform
» Very fast when there's nothing to do
» Think “incremental build”
= One environment variable: NINJA_STATUS

» Conftrols the output’s format

Some more nice features

» Qutputs depend on the command line
» Changing the compilation flags will cause a rebuild
» Builds are parallel by default

» Need correct dependencies

= Run ninja with nice

» Command output is buffered

How to write your own build.ninja files

» Don't

build.ninja syntax

» variables (aliases for strings)

<variable> = <value>

» puild statements (how to do things)

build <outputs>: <rulename> <inputs>

» rules (what things to do)

rule <rulename>

<variable> <value>

<variable> <value>

Example build.ninja

cflags = -Wall

rule cc

command = gcc $cflags -c $in -o $out

build foo.o0: cc foo.c

Contents

» |nfroduction

» Definitions

» CMake

» Example

» CMake as alanguage

» Other command line tools
» Ninja

= Tying it all together

Tying It all together

» CMake supports multiple generators

cmake -G “Unix Makefiles”

cmake -G “Ninja”

» Makefiles work well, but Ninja was designed for this

Summary

» Speed: handled by Ninja
» Flexibility: provided by CMake

» Reliabllity: both seem to be reliable so far

» UUse CMake with Ninja

» | ook for better alternatives for existing tools

Thanks for listening & Questions

Contact me atistvan.papp@ericsson.com

mailto:istvan.papp@ericsson.com

