
CMake & Ninja
by István Papp

istvan.papp@ericsson.com

mailto:istvan.papp@ericsson.com

Hello & Disclaimer

 I don’t know everything (surprise!), if I stare blankly after a question,

go to https://cmake.org/

 Spoiler alert: or https://ninja-build.org/

https://cmake.org/
https://ninja-build.org/

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

Definitions

 A practical view from my perspective, some of these are debatable

 Send me feedback, so 2.0 will be better

What is the goal of a build system?

 Get from source* to binary*

 *Source: source code, text file, assets (textures, audio)

 *Binary: executable, zip file, text file

</>
110

011

Requirements

 Speed

 Reliability

 Flexibility

Requirements - Speed

 Fast feedback

 Catch errors ASAP

 Avoid breaking stuff for others

 Conserve resources

 No effect on the compiler*

 Avoid work

 Parallel execution

*Build step: zip, upload/download, compilation

Requirements - Reliability

 Umbrella term

 Deterministic

 Stable

 No unexpected behaviour

Requirements - Flexibility

 Large variety of tasks

 Easy to modify

 Easy to read

Sources of complexity

 Source code in multiple directories

 External libraries

 Targeting different platforms

 Compilers

 Operating systems

 Hardware

 Test code

 Mixing languages

Make

 Make is very generic

 Mostly conforms to the requirements

 Designed in 1977 (40 years old!)

 We can do better now

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

CMake

 “Cross-Platform Makefile Generator” (source: man cmake)

 Created by a company called Kitware about 17 years ago

 Gained popularity in the last 3-4 years

 Open source software, like most good development tools

 Popular = StackOverflow compatible

 Replaces configuration utilities like autotools

Capabilities – cross-platform

 Runs on Linux, Windows, Mac OSX

 Can compile for Linux, Windows, Mac OSX

 Executable/binary format

 Path separators

 Platform-dependent libraries

Capabilities – in-place & out-of-place

 In-place (in-tree): objects files and binaries mixed with source

 Easy to do

 Out-of-place (out-of-tree): build artifacts gathered in a dedicated
directory

 Easy to force a clean build

 Multiple builds in same repo

Capabilities

 Mostly C/C++, supports other languages

 Supports using multiple toolkits

 Supports static and dynamic library builds

 Uses build tools native to the environment

 Has a graphical interface

 Extendable via macros, functions and modules

Build process

1. Generate standard build files from platform independent

configuration files.

 CMakeLists.txt files in every directory.

2. Perform the actual build using native tools.

 Usually make, gcc, msvc++, whatever the platform has.

CMakeLists.txt Makefile Binary

cmake make + gcc

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

A simple example

<project_root>

|--build

|--inc

| `--<header files>

`--src

|--main.cc

`--CMakeLists.txt

A simple example

<project_root>/src/CMakeLists.txt:

Adding a library

<project_root>

|--build

|--inc

| `--<header files>

|--src

| |--main.cc

| `--CMakeLists.txt

`--graphics

|--inc

| `--<library header files>

|--src

| |--bells.cc

| |--whistes.cc

| `--CMakeLists.txt

`--CMakeLists.txt

Adding a library

<project_root>/src/CMakeLists.txt:

Adding a library

<project_root>/graphics/CMakeLists.txt:

Adding a library

<project_root>/graphics/src/CMakeLists.txt:

Using the example

cd <project_root>/build

cmake ../src && make

 Binaries by default go into the directory where you start cmake

 The argument is the directory where the starting CMakeLists.txt lives

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

Variables

Variables

Lists

Lists

Conditionals

Conditionals

Formatting

Other rules

Everything else

 Iteration: foreach(), while()

 Platform inspection: check_function_exists()

 Reuse: add_custom_command(), macro(), function()

 Extension: include() files from CMAKE_MODULE_PATH

Now you know how to read the documentation

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

CTest

Test driver for unit and component tests

1. Add enable_testing() to your listfile

2. Add testcases with add_test()

3. Run your tests with ctest

4. ???

5. Profit!

CPack

 Installation: install_*() commands

 Distribution: include(CPack), cpack_*() commands

 tar.gz, zip, deb, rpm, etc.

 cpack --config <your_config>.cmake

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

Ninja

Small build system with a focus on speed

 Generated input

 Still human-readable

 Prefer speed over convenience

 Do one thing, and do it well

How?

 Dependency of files as input

 No unnecessary decisions

 Compilers?

 Compiler flags?

 Debug or release?

 The bare minimum to describe dependency graphs

 Ninja doesn't know about your language

Features

 Multiplatform

 Very fast when there's nothing to do

 Think “incremental build”

 One environment variable: NINJA_STATUS

 Controls the output’s format

Some more nice features

 Outputs depend on the command line

 Changing the compilation flags will cause a rebuild

 Builds are parallel by default

 Need correct dependencies

 Run ninja with nice

 Command output is buffered

How to write your own build.ninja files

 Don't

build.ninja syntax

 variables (aliases for strings)

<variable> = <value>

 build statements (how to do things)

build <outputs>: <rulename> <inputs>

 rules (what things to do)

rule <rulename>

<variable> = <value>

<variable> = <value>

Example build.ninja

cflags = -Wall

rule cc

command = gcc $cflags -c $in -o $out

build foo.o: cc foo.c

Contents

 Introduction

 Definitions

 CMake

 Example

 CMake as a language

 Other command line tools

 Ninja

 Tying it all together

Tying it all together

 CMake supports multiple generators

cmake –G “Unix Makefiles”

cmake –G “Ninja”

 Makefiles work well, but Ninja was designed for this

Summary

 Speed: handled by Ninja

 Flexibility: provided by CMake

 Reliability: both seem to be reliable so far

 Use CMake with Ninja

 Look for better alternatives for existing tools

Thanks for listening & Questions
Contact me at istvan.papp@ericsson.com

mailto:istvan.papp@ericsson.com

