
©2023, SonarSource S.A, Switzerland.

Incremental CSA

Philipp Dominik Schubert, Balázs Benics

1

©2023, SonarSource S.A, Switzerland.

Agenda

Motivation

The engine as of today

The prototype

Preliminary results

Questions

2

©2023, SonarSource S.A, Switzerland.

Agenda

Motivation

The engine as of today

The prototype

Preliminary results

Questions

3

Motivation

4

©2023, SonarSource S.A, Switzerland.

Motivation

5

symbolic execution

parsing

(seconds) Translation units
0

10

20

30

40

50

60

70

80

©2023, SonarSource S.A, Switzerland.

Agenda

Motivation

The engine as of today

The prototype

Preliminary results

Questions

6

©2023, SonarSource S.A, Switzerland.

Call graph

7

©2023, SonarSource S.A, Switzerland.

Call graph

8

©2023, SonarSource S.A, Switzerland.

9

Has body?

Wants to
inline?

Map arguments
and jump Invalidate arguments and globals

Inlining heuristic side effects

yes no

yes no

©2023, SonarSource S.A, Switzerland.

Inlining heuristic side effects

● Can decide not to inline, even if we could.

● Once inlined ⤃ always inlined.

● Inlined functions considered “covered”

● Might remember to never inline something again.

10

©2023, SonarSource S.A, Switzerland.

Call graph

11

©2023, SonarSource S.A, Switzerland.

Call graph

12

©2023, SonarSource S.A, Switzerland.

Call graph

13

©2023, SonarSource S.A, Switzerland.

Call graph

14

Analysis times
per entry point

15

©2023, SonarSource S.A, Switzerland.

More frequent

Runs longer

16

1

10

100

1k

10k

0 1 sec 2 sec 3 sec 4 sec 5

occurrences

En
tr

y
po

in
t

ru
nn

in
g

tim
es

©2023, SonarSource S.A, Switzerland.

17

Let’s fix long analysis times…

● Serious engineering

● Unchanged since the dawn

● Multiple stakeholders

● High risk

©2023, SonarSource S.A, Switzerland.

Agenda

Motivation

The engine as of today

The prototype

Preliminary results

Questions

18

©2023, SonarSource S.A, Switzerland.

Guiding principles

● Minimal

● Self-contained

● Significant speedup for the “usual” cases

19

©2023, SonarSource S.A, Switzerland.

Prototype architecture

● Analysis cache

● Oracle

● Report replayer

● Report recorder

20

©2023, SonarSource S.A, Switzerland.

Prototype architecture

● Analysis cache

● Oracle

● Report replayer

● Report recorder

21

Load cache

Select next
entry point

Replay
diagnostics

Analyze
as usual

Record
diagnostics

Changed?
noyes

©2023, SonarSource S.A, Switzerland.

Prototype architecture

● Analysis cache

● Oracle

● Report replayer

● Report recorder

22

Load cache

Select next
entry point

Replay
diagnostics

Analyze
as usual

Record
diagnostics

Changed?
noyes

©2023, SonarSource S.A, Switzerland.

Prototype architecture

● Analysis cache

● Oracle

● Report replayer

● Report recorder

23

Load cache

Select next
entry point

Replay
diagnostics

Analyze
as usual

Record
diagnostics

Changed?
noyes

©2023, SonarSource S.A, Switzerland.

Prototype architecture

● Analysis cache

● Oracle

● Report replayer

● Report recorder

24

Load cache

Select next
entry point

Replay
diagnostics

Analyze
as usual

Record
diagnostics

Changed?
noyes

©2023, SonarSource S.A, Switzerland.

Anchor decls, relative references

c:@N@num@F@add#I#I#

FunctionDecl add 'int (int, int)'

|-ParmVarDecl used x 'int'

|-ParmVarDecl used y 'int'

`-CompoundStmt

 `-ReturnStmt

 `-BinaryOperator 'int' '+'

 |-ImplicitCastExpr 'int' <LValueToRValue>

 | `-DeclRefExpr 'int' lvalue ParmVar 'x' 'int'

 `-ImplicitCastExpr 'int' <LValueToRValue>

 `-DeclRefExpr 'int' lvalue ParmVar 'y' 'int'

25

namespace num {

 void add(int x, int y) {

 return x + y;

 }

}

©2023, SonarSource S.A, Switzerland.

namespace num {

 void add(int x, int y) {

 return x + y;

 }

}

Anchor decls, relative references

c:@N@num@F@add#I#I#

FunctionDecl add 'int (int, int)'

|-ParmVarDecl used x 'int'

|-ParmVarDecl used y 'int'

`-CompoundStmt

 `-ReturnStmt

 `-BinaryOperator 'int' '+'

 |-ImplicitCastExpr 'int' <LValueToRValue>

 | `-DeclRefExpr 'int' lvalue ParmVar 'x' 'int'

 `-ImplicitCastExpr 'int' <LValueToRValue>

 `-DeclRefExpr 'int' lvalue ParmVar 'y' 'int' seq{2,0,0,1,0}

26

©2023, SonarSource S.A, Switzerland.

Relocatable diagnostics

● Anchor decl

● AST index sequence

● Getter function

● Message

source location

27

©2023, SonarSource S.A, Switzerland.

Oracle

● Preprocessor token watcher

● Hash:

○ source text

○ call dependencies

○ type dependencies

28

©2023, SonarSource S.A, Switzerland.

Diagnostic relocation

● Relocate diagnostics eagerly

● Might have absolute line refs

○ “Control jumps to line 80”

○ “[...] call to alloca() on line 55 returned to caller”

○ “Loop condition is false. Execution continues on line 44”

29

©2023, SonarSource S.A, Switzerland.

Agenda

Motivation

The engine as of today

The prototype

Preliminary results

Questions

30

Preliminary results

31

Whitespace, comment changes

parsing: 48 ms

symbolicExecution: 1984 ms

parsing: 62 ms

symbolicExecution: 42 ms

Default Analysis Incremental Analysis

32

gzip:inflate.c

Vim

33Commits

Default analysis time

Time saved with incremental mode

(minutes)

0

-17

-33

-50

-67

67

50

33

17

(commit 9) 34

0

50

100

150

-50

-100

-150

(seconds) Translation units

Default analysis time

Time saved with incremental mode

Vim

https://github.com/vim/vim/commit/a2a8973e51a0052bb52e43a2b22e7ecdecc32003

35

Bitcoin

0

17

Default analysis time

Time saved with incremental mode-17

33

50

67

83

100

Commits(minutes)

36

Bitcoin

(commit 9)(seconds) Translation units

0

-50

-100

-150

50

100

150

200 Default analysis time

Time saved with incremental mode

https://github.com/bitcoin/bitcoin/commit/01e1627e25bc5477c40f51da03c3c31b609a85c9

©2023, SonarSource S.A, Switzerland.

37

Weaknesses

Changes in commonly inlined function (“sharing”)

©2023, SonarSource S.A, Switzerland.

38

1
2
3
4

30
20
10

(seconds) Translation units

Entry point running times and sharing

0

20

40

60

100

80

Sh
ar

ed
 n

od
es

(default run)

©2023, SonarSource S.A, Switzerland.

39

1
2
3
4

30
20
10

(seconds) Translation units

Entry point running times and sharing

0

20

40

60

100

80

Sh
ar

ed
 n

od
es

(default run)

Conclusion

● Moderate improvements overall

● Only a few cache-hits for C++

● A lot of potential

● Works well for trivial, narrow changes

40

©2023, SonarSource S.A, Switzerland.

Agenda

Motivation

The engine as of today

The prototype

Preliminary results

Questions

41

