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Inlining heuristic side effects

● Can decide not to inline, even if we could.

● Once inlined ⤃ always inlined.

● Inlined functions considered “covered”

● Might remember to never inline something again.
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More frequent

Runs longer
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Let’s fix long analysis times…

● Serious engineering

● Unchanged since the dawn

● Multiple stakeholders

● High risk
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Guiding principles

● Minimal

● Self-contained

● Significant speedup for the “usual” cases
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Prototype architecture

● Analysis cache

● Oracle

● Report replayer

● Report recorder
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Anchor decls, relative references

c:@N@num@F@add#I#I#

FunctionDecl add 'int (int, int)'

|-ParmVarDecl used x 'int'

|-ParmVarDecl used y 'int'

`-CompoundStmt

 `-ReturnStmt

   `-BinaryOperator 'int' '+'

     |-ImplicitCastExpr 'int' <LValueToRValue>

     | `-DeclRefExpr 'int' lvalue ParmVar 'x' 'int'

     `-ImplicitCastExpr 'int' <LValueToRValue>

       `-DeclRefExpr 'int' lvalue ParmVar 'y' 'int'
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namespace num {

  void add(int x, int y) {

    return x + y;

  }

}
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namespace num {

  void add(int x, int y) {

    return x + y;

  }

}

Anchor decls, relative references

c:@N@num@F@add#I#I#

FunctionDecl add 'int (int, int)'

|-ParmVarDecl used x 'int'

|-ParmVarDecl used y 'int'

`-CompoundStmt

 `-ReturnStmt

   `-BinaryOperator 'int' '+'

     |-ImplicitCastExpr 'int' <LValueToRValue>

     | `-DeclRefExpr 'int' lvalue ParmVar 'x' 'int'

     `-ImplicitCastExpr 'int' <LValueToRValue>

       `-DeclRefExpr 'int' lvalue ParmVar 'y' 'int' seq{2,0,0,1,0}
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Relocatable diagnostics

● Anchor decl 

● AST index sequence

● Getter function

● Message

source location
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Oracle

● Preprocessor token watcher

● Hash:

○ source text

○ call dependencies

○ type dependencies
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Diagnostic relocation

● Relocate diagnostics eagerly

● Might have absolute line refs

○ “Control jumps to line 80”

○ “[...] call to alloca() on line 55 returned to caller”

○ “Loop condition is false. Execution continues on line 44”
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Preliminary results
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Whitespace, comment changes

parsing: 48 ms

symbolicExecution: 1984 ms

parsing: 62 ms

symbolicExecution: 42 ms

Default Analysis Incremental Analysis
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gzip:inflate.c



Vim
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Bitcoin
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Weaknesses

Changes in commonly inlined function (“sharing”)
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Conclusion

● Moderate improvements overall

● Only a few cache-hits for C++

● A lot of potential

● Works well for trivial, narrow changes
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